Expanding depth and meaning within urban design processes through the application of complexity and evolutionary theories
Abstract
Previous research has established the value of regarding cities as complex systems, and as systems which will evolve over time. The research reported in this paper concerns the development of an approach to urban design and management which recognises the complexities of change resulting from design-led urban interventions. The research commenced with a study of urban design and urban management processes, and the manner in which they have been studied in an academic context. The system aims to guide the processes of urban design so that it can be implemented within a cyclical process of evaluation and application. The system aids communication across design teams and improves clarity within the design process for the designers themselves. The specific system also aspires to interconnect theory with practice, while supporting designers to be inclusive and holistic. The paper describes a case study where the framework was applied within an academic setting, related to real urban environments in Singapore. It validates the model’s ability to guide students through the design process, give depth to their analysis of urban systems and meaning to their designs. Action research was implemented, to reflect the need for a “practice-changing practice” methodology, that supports a greater understanding of the relationship between theory and practice.
Keyword : urban, management, evolution, collaboration, education
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Allen, P. M. (1981). The evolutionary paradigm of dissipative structures. In E. Jantch (Ed.), The evolutionary vision: towards a unifying paradigm of physical, biological and sociocultural evolution (pp. 25–71). Westview Press.
Allen, P. M. (1997). Cities and regions as self-organising systems: models of complexity. Taylor & Francis.
Allen, P. M. (2012). Cities: the visible expression of co-evolving complexity. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age (pp. 67–127).
Springer. https://doi.org/10.1007/978-3-642-24544-2_5
Bak, P. (1996). How nature works: the science of self-organized criticality. Springer. https://doi.org/10.1007/978-1-4757-5426-1
Batty, M., & Marshall, S. (2009). Centenary paper: The evolution of cities: Geddes, Abercrombie and the new physicalism. Town Planning Review, 80(6), 551–574.
https://doi.org/10.3828/tpr.2009.12
Batty, M., & Marshall, S. (2012). The origins of complexity theory in cities and planning. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come of age (pp. 21–45). Springer. https://doi.org/10.1007/978-3-642-24544-2_3
Bina, O., Balula, L., Varanda, M., & Fokdal, J. (2016). Urban studies and the challenge of embedding sustainability: A review of international master programmes. Journal of Cleaner Production, 137, 330–346. https://doi.org/10.1016/j.jclepro.2016.07.034
Boden, M. (1991). The creative mind: myths and mechanisms. Basic Books.
Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. John Wiley & Sons.
https://doi.org/10.1002/0471746096
Chan, D. (1998). The sconceptualisation and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modelling (MLGM). Organizational Research Methods, 1, 421–483. https://doi.org/10.1177/109442819814004
Cross, N. (2008). Engineering design methods: strategies for product design (4th ed.). John Wiley & Sons.
Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray. https://doi.org/10.5962/bhl.title.68064
Dawkins, R. (1976). The selfish gene. OUP.
Flick, U. (2014). An introduction to qualitative research. Sage.
Geddes, P. (1915, 1949). Cities in evolution (new and rev. ed.). William and Norgate.
Haken, H. (1983). Synergetics, advanced topics. Springer. https://doi.org/10.1007/978-3-642-88338-5
Haken, H., Wunderlin, A., & Yigitbasi, S. (1995). An introduction to cybernetics. Open Systems & Information Dynamics, 3(1), 97–130. ttps://doi.org/10.1007/BF02228811
Hennink, M., Hutter, I., & Bailey, A. (2011). Qualitative research methods. Sage.
Hodgson, A. (2011). Ready for anything. Triarchy Press.
Jacobs, J. (1961). The death and life of great American cities. Penguin Books.
Kemmis, S. (2009). Action research as a practice-based practice. Educational Action Research, 17(3), 463–474.
https://doi.org/10.1080/09650790903093284
Kemmis, S. (2014). The action research planner: doing critical participatory action research (R. McTaggart & R. Nixon, Eds.). Springer. https://doi.org/10.1007/978-981-4560-67-2
Khan, A. Z., Vandevyvere, H., & Allacker, K. (2013). Design for the ecological age: rethinking the role of sustainability in architectural education. Journal of Architectural Education, 67(2), 175–185. https://doi.org/10.1080/10464883.2013.817155
Krick, E. (1969). An introduction to engineering and engineering design. John Wiley & Sons.
Lefebvre, H. (1991). The production of space. Blackwell.
Leon, M., & Laing, R. (2020). A concept design stages protocol to support collaborative processes in architecture, engineering and construction projects. Journal of Engineering, Design and Technology. https://doi.org/10.1108/JEDT-10-2020-0399
Li, N., Chan, D., Mao, Q., Hsu, K., & Fu, Z. (2018). Urban sustainability education: Challenges and pedagogical experiments. Habitat International, 71, 70–80. https://doi.org/10.1016/j.habitatint.2017.11.012
Loorbach, D. (2007). Transition management: new mode of governance for sustainable development. International Books.
Marshall, S. (2009). Cities design and evolution. Routledge.
Marshall, S., & Batty, M. (2009). From Darwinism to planning, through Geddes and back. Town & Country Planning, 78, 462–464.
Merriam, S. B. (1998). Qualitative research and case study application in education (Revised and expanded from “Case study research in education”). Jossey-Bass Publishers.
Miller, J. G. (1978). Living systems. McGraw-Hill.
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering design: a systematic approach (3rd ed.). Springer.
https://doi.org/10.1007/978-1-84628-319-2
Ployhart, R. E., & Vandenberg, R. J. (2010). Longitudinal research: the theory, design, and analysis of change. Journal of Management, 36(1), 94–120. https://doi.org/10.1177/0149206309352110
Portugali, J. (2008). Learning from paradoxes about prediction and planning in selforganising cities. Planning Theory, 7(3), 248–262. https://doi.org/10.1177/1473095208094823
Portugali, J. (2012). Complexity theories of cities: achievements, criticism and potentials. In J. Portugali, H. Meyer, E. Stolk, & E. Tan (Eds.), Complexity theories of cities have come to age. Springer. https://doi.org/10.1007/978-3-642-24544-2_4
Prigogine, I., & Nicolis, G. (1977). Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. John Wiley & Sons.
Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169. https://doi.org/10.1007/BF01405730
Salingaros, N. A. (2000). The structure of pattern languages. Architectural Research Quarterly, 4(2), 149–162. https://doi.org/10.1017/S1359135500002591
Schon, D. (1991). The reflective practitioner: how professionals think in action. Ashgate Publishing Limited.
Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181–201.
https://doi.org/10.1016/0004-3702(73)90011-8
Simon, H. A. (1996). The sciences of the artificial. MIT Press.
Spencer, D. (2009). Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. Journal of Architecture, 14(3), 446–450.
https://doi.org/10.1080/13602360903028044
Tong, C., & Sriram, D. (1992). Chapter 1: Introduction. In C. Tong (Ed.), Artificial intelligence in engineering design. Academic Press. https://doi.org/10.1016/B978-0-12-660562-4.50008-X
Valkenburg, R., & Dorst, K. (2008). The reflective practice of design teams. Design Studies, 19(3), 249–271. https://doi.org/10.1016/S0142-694X(98)00011-8
van Dooren, E., Boshuizen, E., van Merriënboer, J., Asselbergs, T., & van Dorst, M. (2014). Making explicit in design education: generic elements in the design process. International Journal of Technology and Design Education, 24, 53–71. https://doi.org/10.1007/s10798-013-9246-8
Walliman, N. (2006). Social research methods. Sage.
https://doi.org/10.4135/9781849209939
Wellington, J. (2015). Education research: contemporary issues and practical approaches. Bloomsbury Publishing.
https://doi.org/10.5040/9781474236966
Wilson, D. S. (2011). The neighborhood project. Little, Brown and Company.