Expert panel on in-situ visual inspections for masonry churches maintenance stage
Abstract
The incorporation of protocols in heritage building preservation is important for the definition of preventive conservation actions. Such integration is needed to avoid restoration actions and to promote preventive maintenance instead of corrective maintenance actions. This paper presents the application of an innovative digital management system using artificial intelligence that can quantify the suitability of a sample. This kind of application can support the maintenance management of buildings and minimise human error in data collection. The fuzzy system showed slight differences between the members of the expert panel during the in-situ visual inspection. These results indicate that, despite differences between various experts’ evaluation of a building, the proposed digital method helps minimise the uncertainty in the results. The paper highlights input variables, which present high dispersion (load state modification, fire and occupancy), and input parameters, which present low dispersion (preservation, roof design and overloads). Fuzzy systems can adequately manage the uncertainties associated with different experts’ assessment of sample that present constructive homogeneity. This study can give advantages to stakeholders during the inspection, diagnosis and evaluation stages in the improvement of mitigation policies focused on preventive maintenance programs dedicated to the resilience of heritage buildings, specifically churches emplaced in Chile.
Keyword : expert panel, fuzzy logic, preventive conservation, heritage buildings, churches, maintenance
References
Augusti, G., Ciampoli, M., & Giovenale, P. (2001). Seismic vulnerability of monumental buildings. Structural Safety, 23(3), 253–274. https://doi.org/10.1016/S0167-4730(01)00018-2
Carpio, M., Martín-Morales, M., & Zamorano, M. (2015). Comparative study by an expert panel of documents recognized for energy efficiency certification of buildings in Spain. Energy and Buildings, 99, 98–103. https://doi.org/10.1016/j.enbuild.2015.04.022
Chai, Y., Jia, L., & Zhang, Z. (2009). Mamdani model based adaptive neural fuzzy inference system and its application in traffic level of service evaluation. 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), 4, 555–559. https://doi.org/10.1109/FSKD.2009.76
Chandramohan, A., Rao, M. V. C., & Senthil Arumugam, M. (2006). Two new and useful defuzzification methods based on root mean square value. Soft Computing, 10(11), 1047–1059. https://doi.org/10.1007/s00500-005-0042-6
Endsley, M. R. (2000). Errors in situation assessment: Implications for system design BT. In P. F. Elzer, R. H. Kluwe, & B. Boussoffara (Eds.), Human error and system design and management (pp. 15–26). Springer London. https://doi.org/10.1007/BFb0110451
Flores-Colen, I., de Brito, J., & de Freitas, V. P. (2006). Expedient in situ test techniques for predictive maintenance of rendered façades. Journal of Building Appraisal, 2(2), 142–156. https://doi.org/10.1057/palgrave.jba.2940047
Hallberg, D. (2009). System for predictive life cycle management of buildings and infrastructures [Doctoral thesis. KTH Research School – HIG Centre for Built Environment, University of Gävle]. https://www.diva-portal.org/smash/get/diva2:214580/FULLTEXT01.pdf
Hughes, J. J., & Callebaut, K. (2002). In-situ visual analysis and practical sampling of historic mortars. Materials and Structures, 34(246), 70–75. https://doi.org/10.1007/BF02482103
Ibrahim, F., Harun, S., Samad, A., Hanim, M., Harun, W., & Mariah, W. (2008). Interior semantics of the lobby/waiting area in general hospitals; a preliminary study. In 2nd International Conference on Built Environment in Developing Countries (ICBEDC 2008).
International Organization for Standardization. (2014). Building construction – Service life planning – Part 4: Service life planning using Building Information Modelling (ISO Standard No. 15686-4:2014). https://www.iso.org/standard/59150.html
International Organization for Standardization. (2018). Risk management (ISO Standard No. 31000:2018). https://www. iso.org/iso-31000-risk-management.html
Jantzen, J. (2015). Design of fuzzy controllers. Technical University of Denmark.
Kasal, B., & Anthony, R. W. (2004). Advances in in situ evaluation of timber structures. Progress in Structural Engineering and Materials, 6(2), 94–103. https://doi.org/10.1002/pse.170
Khodeir, L. M., Aly, D., & Tarek, S. (2016). Integrating HBIM (Heritage building information modeling) tools in the application of sustainable retrofitting of heritage buildings in Egypt. Procedia Environmental Sciences, 34, 258–270. https://doi.org/10.1016/j.proenv.2016.04.024
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Macías-Bernal, J. M., Calama-Rodríguez, J. M., Chávez-de Diego, M. J., & Diego, M. J. C. (2014). Modelo de predicción de la vida útil de la edificación patrimonial a partir de la lógica difusa. Informes de la Construcción, 66(533), e006 (in Spanish). https://doi.org/10.3989/ic.12.107
Maliene, V., Dixon-Gough, R., & Malys, N. (2018). Dispersion of relative importance values contributes to the ranking uncertainty: Sensitivity analysis of Multiple Criteria Decision-Making methods. Applied Soft Computing Journal, 67, 286–298. https://doi.org/10.1016/j.asoc.2018.03.003
Marcinkowska, E. (2002). Technical and functional requirements of building deterioration estimation. Archives of Civil Engineering, 48(1), 125–134.
Marôco, J. (2018). Análise estatística com o SPSS statistics (7th ed.). Pêro Pinheiro.
Menezes, A., Glória Gomes, M., & Flores-Colen, I. (2015). In-situ assessment of physical performance and degradation analysis of rendering walls. Construction and Building Materials, 75, 283–292. https://doi.org/10.1016/j.conbuildmat.2014.11.039
Meola, C., Di Maio, R., Roberti, N., & Carlomagno, G. M. (2005). Application of infrared thermography and geophysical methods for defect detection in architectural structures. Engineering Failure Analysis, 12(6 Special Issue), 875–892. https://doi.org/10.1016/j.engfailanal.2004.12.030
Ministerio de Vivienda y Urbanismo. (2019). Gobierno de Chile. https://www.minvu.cl/
Pintelon, L., & Van Puyvelde, F. (2006). Maintenance decision making. Acco.
Prieto Ibáñez, A. J., Bernal, J. M. M., de Diego, M. J. C., & Sánchez, F. J. A. (2016). Expert system for predicting buildings service life under ISO 31000 standard. Application in architectural heritage. Journal of Cultural Heritage, 18, 209–218. https://doi.org/10.1016/j.culher.2015.10.006
Prieto, A. J., Silva, A., de Brito, J., Macías-Bernal, J. M., & Alejandre, F. J. (2017). Multiple linear regression and fuzzy logic models applied to the functional service life prediction of cultural heritage. Journal of Cultural Heritage, 27, 20–35. https://doi.org/10.1016/j.culher.2017.03.004
Prieto, A. J., Silva, A., de Brito, J., & Macias-Bernal, J. M. (2018). Serviceability of facade claddings. Building Research & Information, 46(2), 179–190. https://doi.org/10.1080/09613218.2016.1264808
Prieto, A. J., Vásquez, V., Silva, A., Horn, A., Alejandre, F. J., & Macías-Bernal, J. M. (2019). Protection value and functional service life of heritage timber buildings. Building Research and Information, 47(5), 567–584. https://doi.org/10.1080/09613218.2017.1404827
Prieto, A. J., Verichev, K., & Carpio, M. (2020). Heritage, resilience and climate change: A fuzzy logic application in timberframed masonry buildings in Valparaíso, Chile. Building and Environment, 174, 106657. https://doi.org/10.1016/j.buildenv.2020.106657
Riggio, M., Anthony, R. W., Augelli, F., Kasal, B., Lechner, T., Muller, W., & Tannert, T. (2014). In situ assessment of structural timber using non-destructive techniques. Materials and Structures, 47(5), 749–766. https://doi.org/10.1617/s11527-013-0093-6
Rosina, E. (2018). Risk assessment for the conservation of historic buildings: New strategies and tools. In IFAU 2017-1st International Forum on Architecture and Urbanism (pp. 114).
Shor, J., & Raz, T. (1988). Assessing the impact of human factors on data processing inspection errors. Computers & Industrial Engineering, 14(4), 503–512. https://doi.org/10.1016/0360-8352(88)90051-4
Silva, A. C. da, Brito, J. de, & Gaspar, P. L. (2016). Methodologies for service life prediction of buildings: with a focus on façade claddings. Springer. https://doi.org/10.1007/978-3-319-33290-1
United Nations Educacional, Scientific and Cultural Organization. (2020). https://en.unesco.org/
Vega, D. J. G., Pamplona, D. A., & Oliveira, A. V. M. (2016). Assessing the influence of the scale of operations on maintenance costs in the airline industry. Journal of Transport Literature, 10(3), 10–14. https://doi.org/10.1590/2238-1031.jtl.v10n3a2
Widyaevan, D. A., & Rahardjo, S. (2019). The aesthetic study of eclectic interior design: A case study of Mimiti and One Eighty Coffee Shop Bandung. In Proceedings of the 5th Bandung Creative Movement International Conference on Creative Industries 2018 (5th BCM 2018), 197, 122–128.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems, 11(1–3), 199–227. https://doi.org/10.1016/S0165-0114(83)80081-5