Construction change order management project support system utilizing Delphi method
Abstract
Change orders are a major challenge in the construction industry due to the associated time and cost impacts. Thus, managing change effectively assists in alleviating cost overruns and delays. Avoiding change orders and controlling them during project phases requires comprehensive research on the factors affecting the change orders management (COM) performance. This study contributes to existing knowledge by introducing a COM performance measurement framework to help construction professionals evaluate, track, and manage COM performance. A comprehensive literature review, personal meetings, and the Delphi technique are utilized to identify 49 performance factors, categorized into 7 COM groups. 13 Delphi panel members are selected according to purposive sampling technique. The collected data are examined through normality and reliability tests and then analyzed by Spearman’s correlation coefficient, score percentage, and the mean to standard deviation ratio to decide whether to continue with the Delphi method. Consensus between the panelists is reached after the second round of Delphi by the utilization of nonparametric statistical tests. The Delphi study results are followed up by measuring the inter-rater agreement (IRA) and ranking the COM performance factors using the sum rank weighting method. Finally, an operational support system framework that takes into consideration the project life cycle of a project is developed to manage and control these factors to decrease disputes between project parties that occur due to improper COM performance.
Keyword : change orders management, Delphi study, construction project management, project success factors, change order risk assessment, planning, project sustainability, key performance indicators, cost overrun, time overrun, risk management
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alaryan, A. (2014). Causes and effects of change orders on construction projects in Kuwait. International Journal of Engineering Research and Applications, 4(7), 1–8.
Al-Dubaisi, A. H. (2000). Change orders in construction projects in Saudi Arabia [Master’s thesis]. King Fahd University of Petroleum & Minerals, Saudi Arabia.
Al-Kofahi, Z., Mahdavian, A., & Oloufa, A. (2020). System dynamics modeling approach to quantify change orders impact on labor productivity 1: principles and model development comparative study. International Journal of Construction Management, 22(7), 1355–1366. https://doi.org/10.1080/15623599.2020.1711494
Alleman, D., Antoine, A. L., Stanford, M. S., & Molenaar, K. R. (2020). Project delivery methods’ change-order types and magnitudes experienced in highway construction. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 12(2), 04520006. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000380
Alnuaimi, A., Taha, R., Al Mohsin, M., & Al-Harthi, A. (2010). Causes, effects, benefits, and remedies of change orders on public construction projects in Oman. Journal of Construction Engineering and Management, 136(5), 615–622. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000154
Alomari, K. A., Gambatese, J. A., & Tymvios, N. (2018). Risk perception comparison among construction safety professionals: Delphi perspective. Journal of Construction Engineering and Management, 144(12), 04018107. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001565
Ameyaw, E., Hu, Y., Shan, M., Chan, A., & Yun, L. (2016). Application of Delphi method in construction engineering and management research: A quantitative perspective. Journal of Civil Engineering and Management, 22(8), 991–1000. https://doi.org/10.3846/13923730.2014.945953
Anees, M., Mohamed, H., & Abdel Razek, M. (2013). Evaluation of change management efficiency of construction contractors. Housing and Building National Research Centre Journal, 9, 77–85. https://doi.org/10.1016/j.hbrcj.2013.02.005
Arain, F., & Pheng, L. (2005a). The potential effects of variation orders on institutional building projects. Facilities, 23(11/12), 496–510. https://doi.org/10.1108/02632770510618462
Arain, F., & Pheng, L. (2005b). How design consultants perceive causes of variation orders for institutional buildings in Singapore. Architectural Engineering and Design Management, 1(3), 181–196. https://doi.org/10.1080/17452007.2005.9684592
Arain, F., & Pheng, L. (2006). Knowledge-based decision support system for management of variation orders for institutional building projects. Automation in Construction, 15, 272–291. https://doi.org/10.1016/j.autcon.2005.06.005
Arain F., & Pheng, L. (2007). Modeling for management of variations in building projects. Engineering, Construction and Architectural Management, 14(5), 420–433. https://doi.org/10.1108/09699980710780737
Arain, F., Assaf, A., & Low, S. (2004). Causes of discrepancies between design and construction. Architectural Science Review, 47(3), 237–249. https://doi.org/10.1080/00038628.2000.9697530
Arcadis. (2019). Global construction disputes report 2019: Laying the foundation for success. https://media.arcadis.com/-/media/project/arcadiscom/com/perspectives/global/2020/global-construction-disputes-2020/global-construction-disputes-report-2019.pdf?rev=-1
Blumberg, B. F., Cooper, D. R., & Schindler, P. S. (2014). Business research methods. McGraw-Hill.
Brown, R., & Hauenstein, N. (2005). Interrater agreement reconsidered: An alternative to the RWG indices. Organizational Research Methods, 8(2), 165–184. https://doi.org/10.1177/1094428105275376
Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Finding differences among construction companies management practices and their relation to project performance. Journal of Management in Engineering, 34(3), 1–13. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000606
Chan, A. P. C., Wong, F. K. W., Hon, C. K. H., Ali Javed, A., & Lyu, S. (2017). Construction safety and health problems of ethnic minority workers in Hong Kong. Engineering, Construction and Architectural Management, 24(6), 901–919. https://doi.org/10.1108/ECAM-09-2015-0143
Charkhakan, M. H., & Heravi, G. (2019). Evaluating the preventability of conflicts arising from change occurrence in construction projects. Engineering, Construction and Architectural Management, 26(8), 1777–1800. https://doi.org/10.1108/ECAM-09-2018-0361
Choi, K., Yin, Y., Goehl, D., & Jeong, H. D. (2020). Alternative contracting methods: Modeling and assessing the effects of contract type on time-cost-change performance. Journal of Management in Engineering, 37(1), 04020096. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000863
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge. https://doi.org/10.4324/9781315456539
Construction Industry Institute. (2012). CII best practices guide, improving project performance, version 4.0. https://www.sig.org/docs2/CII_Best_Practices_Guide_Improving_Project_Performance.pdf?docID=9415
Construction Industry Institute. (2017). Change management. https://www.construction-institute.org/resources/knowledgebase/best-practices/change-management
Du, J., El-Gafy, M., & Zhao, D. (2016). Optimization of change order management process with object-oriented discrete event simulation: Case study. Journal of Construction Engineering and Management, 142(4), 05015018. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001092
Du, J., Jing, H., Castro-Lacouture, D., & Sugumaran, V. (2019). Multi-agent simulation for managing design changes in prefabricated construction projects. Engineering, Construction and Architectural Management, 27(1), 270–295. https://doi.org/10.1108/ECAM-11-2018-0524
Dupras, C., Birko, S., Affdal, A. O., Haidar, H., Lemoine, M. E., & Ravitsky, V. (2020). Governing the futures of non-invasive prenatal testing: An exploration of social acceptability using the Delphi method. Social Science & Medicine, 304, 112930. https://doi.org/10.1016/j.socscimed.2020.112930
Durdyev, S. (2021), Review of construction journals on causes of project cost overruns. Engineering, Construction and Architectural Management, 28(4), 1241–1260. https://doi.org/10.1108/ECAM-02-2020-0137
Egan, J., Seder, J., & Anderson, D. (2012). Practices in construction change order management. Cost Engineering, 12–17. https://studylib.net/doc/25270827/practices-in-construction-change-order-management
El-Sabek, L., & McCabe, B. (2018). Framework for managing integration challenges of last planner system in IMPs. Journal of Construction Engineering and Management, 144(5), 04018022. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001468
Ghodrati, N., Wing Yiu, T., Wilkinson, S., & Shahbazpour, M. (2018). Role of management strategies in improving labor productivity in general construction projects in New Zealand: Managerial perspective. Journal of Management in Engineering, 34(6), 04018035. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000641
Graham, M., Milanowski, A., & Miller, J. (2018). Measuring and promoting inter-rater agreement of teacher and principal performance ratings. Center for Education Compensation Reform.
Gunduz, M., & Elsherbeny, H. (2020). Operational framework for managing construction-contract administration practitioners’ perspective through modified Delphi method. Journal of Construction Engineering and Management, 146(3), 04019110. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001768
Gunduz, M., & Elsherbeny, H. A. (2021). Critical assessment of contract administration using multidimensional fuzzy logic approach. Journal of Construction Engineering and Management, 147(2), 04020162. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001975
Gunduz, M., & Khan, O. (2018). Effective framework for change order management using Analytical Hierarchy Process (AHP). Gazi University Journal of Science, 31(4).
Gunduz, M., & Mohammad, K. (2020). Assessment of change order impact factors on construction project performance using analytic hierarchy process (AHP). Technological and Economic Development of Economy, 26(1), 71–85. https://doi.org/10.3846/tede.2019.11262
Gunduz, M., & Tehemar, S. (2020). Assessment of delay factors in construction of sport facilities through multi criteria decision making. Production Planning & Control, 31(15), 1291–1302. https://doi.org/10.1080/09537287.2019.1704903
Gunduz, M., Nielsen, Y., & Ozdemir, M. (2015). Fuzzy assessment model to estimate the probability of delay in Turkish construction projects. Journal of Management in Engineering, 31(4), 04014055. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000261
Gündüz, M., Nielsen, Y., & Özdemir, M. (2013). Quantification of delay factors using the relative importance index method for construction projects in Turkey. Journal of Management in Engineering, 29(2), 133–139. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000129
Günhan, S., Arditi, D., & Doyle, J. (2007). Avoiding change orders in public school construction. Journal of Professional Issues in Engineering Education and Practice, 133(1), 67–73. https://doi.org/10.1061/(ASCE)1052-3928(2007)133:1(67)
Habibi, M., Kermanshachi, S., & Safapour, E. (2018). Engineering, procurement and construction cost and schedule performance leading indicators: state-of-the-art review. In Proceedings of Construction Research Congress (pp. 2–4), New Orleans, Louisiana. ASCE. https://doi.org/10.1061/9780784481271.037
Hallowell, M., & Gambatese, J. (2010). Qualitative research: Application of the Delphi method to CEM research. Journal of Construction Engineering and Management, 136(1), 99–107. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000137
Han, S., Lee, S., & Pena-Mora, F. (2012). Identification and quantification of non-value-adding effort from errors and changes in design and construction projects. Journal of Construction Engineering and Management, 138(1), 98–109. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000406
Hanif, H., Khurshid, M., Nauman, S., & Lindhard, S. (2016). Impact of variation orders on time and cost in mega hydropower projects of Pakistan. Journal of Construction in Developing Countries, 21(2), 37–53. https://doi.org/10.21315/jcdc2016.21.2.3
Hanna, A., & Iskandar, K. (2017). Quantifying and modelling the cumulative impact of change orders. Journal of Construction Engineering and Management, 143(10), 04017076. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001385
Hasan, A., Baroudi, B., Elmualim, A., & Rameezdeen, R. (2018). Factors affecting construction productivity: A 30 year systematic review. Engineering, Construction and Architectural Management, 25(7), 916–937. https://doi.org/10.1108/ECAM-02-2017-0035
Heravi, G., & Charkhakan, M. (2014). Predicting and tracing change formation scenarios in construction projects using the DEMATEL technique. Journal of Management in Engineering, 30(6), 04014028. http://doi.org/10.1061/(ASCE)ME.1943-5479.0000229
Hon, C., Chan, A., & Yam, M. (2012). Empirical study to investigate the difficulties of implementing safety practices in the repair and maintenance sector in Hong Kong. Journal of Construction Engineering and Management, 138(7), 877–884. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000497
Hwang, B., Shan, M., & Looi, K. (2018). Knowledge-based decision support system for prefabricated prefinished volumetric construction. Automation in Construction, 94, 168–178. https://doi.org/10.1016/j.autcon.2018.06.016
Hwang, B., Zhao, X., & Goh, K. (2014). Investigating the client-related rework in building projects: The case of Singapore. International Journal of Project Management, 32(4), 698–708. https://doi.org/10.1016/j.ijproman.2013.08.009
Ibbs, W., Nguyen, L., & Lee, S. (2007). Quantified impacts of project change. Journal of Professional Issues in Engineering Education and Practice, 133(1), 45–52. https://doi.org/10.1061/(ASCE)1052-3928(2007)133:1(45)
Ibrahim, M. W., Hanna, A. S., & Kievet, D. (2020a). Quantitative comparison of project performance between project delivery systems. Journal of Management in Engineering, 36(6), 04020082. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000837
Ibrahim, M. W., Hanna, A. S., Russell, J. S., Abotaleb, I. S., & El-adaway, I. H. (2020b). Comprehensive analysis of factors associated with out-of-sequence construction. Journal of Management in Engineering, 36(4), 04020031. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000777
Ibrahim, M. W., Labib, Y., Veeramani, D., Hanna, A. S., & Russell, J. (2021). Comprehensive model for construction readiness assessment. Journal of Management in Engineering, 37(1), 04020088. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000832
Ingle, P. V., & Mahesh, G. (2020). Construction project performance areas for Indian construction projects. International Journal of Construction Management, 22(8), 1443–1454. https://doi.org/10.1080/15623599.2020.1721177
Ingle, P. V., Mahesh, G., & M.D., D. (2021). Identifying the performance areas affecting the project performance for Indian construction projects. Journal of Engineering, Design and Technology, 19(1), 1–20. https://doi.org/10.1108/JEDT-01-2020-0027
Jarkas, A., & Mubarak, S. (2016). Causes of construction change orders in Qatar: Contractors’ perspective. International Journal of Project Organisation and Management, 8(3), 275–299. https://doi.org/10.1504/IJPOM.2016.078273
Kalaian, S., & Kasim, R. (2012). Terminating sequential Delphi survey data collection. Practical Assessment, Research, and Evaluation, 17, 5. https://doi.org/10.7275/g48q-je05
Karami, H., & Olatunji, O. (2020). Critical overrun causations in marine projects. Engineering, Construction and Architectural Management, 27(7), 1579–1594. https://doi.org/10.1108/ECAM-09-2019-0477
Keane, P., Sertyesilisik, B., & Ross, A. (2010). Variations and change orders on construction projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 2(2), 89–96. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000016
Ke, Y., Wang, S., Chan, A., & Lam, P. (2010). Preferred risk allocation in China’s public–private partnership (PPP) projects. International Journal of Project Management, 28(5), 482–492. https://doi.org/10.1016/j.ijproman.2009.08.007
Kermanshachi, S., & Safapour, E. (2019). Identification and quantification of project complexity from perspective of primary stakeholders in US construction projects. Journal of Civil Engineering and Management, 25(4), 380–398. https://doi.org/10.3846/jcem.2019.8633
Kermanshachi, S., Thakur, R., & Govan, P. (2018). Discovering the impact of late change orders and rework on labor productivity: A water treatment case study analysis using system dynamics modeling. In Construction Research Congress, New Orleans, LA, USA. https://doi.org/10.1061/9780784481295.069
Kermanshachi, S., Rouhanizadeh, B., & Dao, B. (2020). Application of Delphi method in identifying, ranking, and weighting project complexity indicators for construction projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 2(1), 04519033. https://doi.org10.1061/(ASCE)LA.1943-4170.0000338
Khalafallah, A., & Shalaby, Y. (2019). Change orders: Automating comparative data analysis and controlling impacts in public projects. Journal of Construction Engineering and Management, 145(11), 04019064. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001700
Khanzadi, M., Nasirzadeh, F., & Dashti, M. S. (2018). Fuzzy cognitive map approach to analyze causes of change orders in construction projects. Journal of Construction Engineering and Management, 144(2), 04017111. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001430
Khoshgoftar, M., Bakar, A. H. A., & Osman, O. (2010). Causes of delays in Iranian construction projects. International Journal of Construction Management, 10(2), 53–69. https://doi.org/10.1080/15623599.2010.10773144
Khoso, A., Khan, J., Faiz, R., & Akhund, M. (2019). Assessment of change orders attributes in preconstruction and construction phase. Civil Engineering Journal, 5(3). https://doi.org/10.28991/cej-2019-03091273
Kim, J., Miller, J., & Kim, S. (2020). Cost impacts of change orders due to unforeseen existing conditions in building renovation projects. Journal of Construction Engineering and Management, 146(8), 04020094. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001888
Kolawole, R., Kamau, P., & Gerryshom, M. (2016). Change order management factors in building projects in Northern Nigeria. Asian Social Science, 12(1), 223–236. https://doi.org/10.5539/ass.v12n1p223
Laerd Statistics. (2018). Pearson’s correlation using SPSS statistics. https://statistics.laerd.com/spss
Lavikka, R., Kyrö, R., Peltokorpi, A., & Särkilahti, A. (2019). Revealing change dynamics in hospital construction projects. Engineering, Construction and Architectural Management, 26(9), 1946–1961. https://doi.org/10.1108/ECAM-03-2018-0119
LeBreton, J., & Senter, J. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organizational Research Methods, 11(4), 815–852. https://doi.org/10.1177/1094428106296642
Love, P., Holt, G., Shen, L., Li, H., & Irani, Z. (2002). Using systems dynamics to better understand change and rework in construction project management systems. International Journal of Project Management, 20(6), 425–436. https://doi.org/10.1016/S0263-7863(01)00039-4
Love, P. E., Matthews, J., & Fang, W. (2020). Rework in construction: A focus on error and violation. Journal of Construction Engineering and Management, 146(9), 06020001. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001901
Lu, Z., Peña-Mora, F., Wang, S. Q., Liu, T., & Wu, D. (2019). Assessment framework for financing public–private partnership infrastructure projects through asset-backed securitization. Journal of Management in Engineering, 35(6), 04019027. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000708
Luo, L., Zhang, L., & He, Q. (2020). Linking project complexity to project success: A hybrid SEM–FCM method. Engineering, Construction and Architectural Management, 27(9), 2591–2614. https://doi.org/10.1108/ECAM-05-2019-0241
Mansour, H., Aminudin, E., Omar, B., & Al-Sarayreh, A. (2022). Development of an impact-on-performance index (IPI) for construction projects in Malaysia: A Delphi study. International Journal of Construction Management, 22(11), 2003–2012. https://doi.org/10.1080/15623599.2020.1762036
Marzuki, P., Oktavianus, A., Regina, A., & Hasiholan, B. (2019). Interface problems in change order-challenged projects. Journal of Construction in Developing Countries, 24(2), 1–22. https://doi.org/10.21315/jcdc2019.24.2.1
Megha, D., & Rajiv, B. (2013). A methodology for ranking of causes of delay for residential construction projects in Indian context. International Journal of Emerging Technology and Advanced Engineering, 3(3), 396–404.
Moselhi, O., Assem, I., & El-Rayes, K., (2005). Change orders impact on labor productivity. Journal of Construction Engineering and Management, 131(3), 354–359. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:3(354)
Msallam, M., Abojaradeh, M., Jrew, B., & Zak, I. (2015). Controlling of variation orders in highway projects in Jordan. Journal of Engineering and Architecture, 3(2), 95–104. https://doi.org/10.15640/jea.v3n2a11
Naji, K., Gunduz, M., & Salat, F. (2020). Assessment of preconstruction factors in sustainable project management performance. Engineering, Construction and Architectural Management, 28(10), 3060–3077. https://doi.org/10.1108/ECAM-05-2020-0333
Oppong, G. D., Chan, A. P., Ameyaw, E. E., Frimpong, S., & Dansoh, A. (2021). Fuzzy evaluation of the factors contributing to the success of external stakeholder management in construction. Journal of Construction Engineering and Management, 147(11), 04021142. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002155
Palaneeswaran, E., Love, P. E., & Kim, J. T. (2014). Role of design audits in reducing errors and rework: Lessons from Hong Kong. Journal of Performance of Constructed Facilities, 28(3), 511–517. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000450
Pereira, E., Ahn, S., Han, S., & Abourizk, S. (2018). Identification and association of high-priority safety management system factors and accident precursors for proactive safety assessment and control. Journal of Management in Engineering, 34(1), 04017041. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000562
Project Management Institute. (2016). Construction extension to the PMBOK guide. Newtown Square, PA. https://www.pmi.org/pmbok-guide-standards/foundational/pmbok/construction-extension
Ozdemir, Ş. (2016). Individual contributions to infollution (information pollution): trust and share. International Journal on New Trends in Education and Their Implications, 7(2), 23–33.
Rockart, J. F. (1980). The changing role of the information systems executive: a critical success factors perspective. https://dspace.mit.edu/bitstream/handle/1721.1/2010/SWP-1297-08770929-CISR-085.pdf
Safapour, E., & Kermanshachi, S. (2018). Identifying early indicators of manageable rework causes and selecting the mitigating construction best practices. Journal of Management in Engineering, 35(2), 04018060. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000669
Saka, A., & Chan, D. (2019). Knowledge, skills and functionalities requirements for quantity surveyors in building information modelling (BIM) work environment: An international Delphi study. Journal of Architectural Engineering and Design Management, 16(3), 227–246. https://doi.org/10.1080/17452007.2019.1651247
Senouci, A., Alsarraj, A., Gunduz, M., & Eldin, N. (2016). Analysis of change orders in Qatari construction projects. International Journal of Construction Management, 17(4), 280–292. https://doi.org/10.1080/15623599.2016.1211973
Serpell, A., Ferrada, X., & Rubio, N. L. (2017). Fostering the effective usage of risk management in construction. Journal of Civil Engineering and Management, 23(7), 858–867. https://doi.org/10.3846/13923730.2017.1321578
Shipton, C., Hughes, W., & Tutt, D. (2014). Change management in practice: An ethnographic study of changes to contract requirements on a hospital project. Construction Management and Economics, 32(7–8), 787–803. https://doi.org/10.1080/01446193.2014.915336
Shrestha, K., & Shrestha, P. (2019). Change orders on road maintenance contracts: Causes and preventive measures. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 11(3), 04519009. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000299
Shrestha, P., & Fathi, M. (2019). Impacts of change orders on cost and schedule performance and the correlation with project size of DB building projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 11(3), 04519010. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000311
Shrestha, P., & Maharjan, R. (2018). Effects of change orders on cost growth, schedule growth, and construction intensity of large highway projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 10(3), 04518012. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000264
Shrestha, P., & Zeleke, H. (2018). Effect of change orders on cost and schedule overruns of school building renovation projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 10(4), 04518018. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000271
Shrestha, P., Shrestha, K., & Zeleke, H. (2019). Probability of change orders and the effect on cost and schedule for new public school buildings. Engineering, Construction and Architectural Management, 26(6), 1087–1104. https://doi.org/10.1108/ECAM-01-2018-0017
Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi method for graduate research. Journal of Information Technology Education: Research, 6(1), 1–21. https://doi.org/10.28945/199
Sourani, A., & Sohail, M. (2015). The Delphi method: Review and use in construction management research. International Journal of Construction Education and Research, 11(1), 54–76. https://doi.org/10.1080/15578771.2014.917132
Sun, M., & Meng, X. (2009). Taxonomy for change causes and effects in construction projects. International Journal of Project Management, 27(6), 560–572. https://doi.org/10.1016/j.ijproman.2008.10.005
Taylor, T., Uddin, M., Goodrum P., McCoy, A., & Shan Y. (2012). Change orders and lessons learned: Knowledge from statistical analyses of engineering change orders on Kentucky highway projects. Journal of Construction Engineering and Management, 138(12), 1360–1369. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000550
Tripathi, K. K., Hasan, A., & Jha, K. N. (2019). Evaluating performance of construction organizations using fuzzy preference relation technique. International Journal of Construction Management, 21(12), 1287–1300. https://doi.org/10.1080/15623599.2019.1613210
Ullah, M., Khan, M. W. A., Hussain, A., Rana, F., & Khan, A. (2020). A construct validation approach for exploring sustainability adoption in Pakistani construction projects. Buildings, 10(11), 207. https://doi.org/10.3390/buildings10110207
Viswanathan, S. K., & Jha, K. N. (2019). Factors influencing international market selection for Indian construction firms. Journal of Management in Engineering, 35(5), 05019006. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000703
Wuni, I. Y., & Shen, G. Q. (2020). Critical success factors for management of the early stages of prefabricated prefinished volumetric construction project life cycle. Engineering, Construction and Architectural Management, 27(9), 2315–2333. https://doi.org/10.1108/ECAM-10-2019-0534
Zhang, D., Haas, C., Goodrum, P., Caldas, C., & Granger, R. (2012). Construction small-projects rework reduction for capital facilities. Journal of Construction Engineering and Management, 138(12), 1377–1385. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000552
Zahoor, H., Chan, A., Gao, R., & Utama, W. (2017). The factors contributing to construction accidents in Pakistan. Engineering, Construction and Architectural Management, 24(3), 463–485. https://doi.org/10.1108/ECAM-01-2016-0027
Zuo, J., Zhao, X., Nguyen, Q. B., Ma, T., & Gao, S. (2018). Soft skills of construction project management professionals and project success factors: A structural equation model. Engineering, Construction and Architectural Management, 25(3), 425–442. https://doi.org/10.1108/ECAM-01-2016-0016