Managerial measures to reduce rework and improve construction safety in a developing country: Malaysian case
Abstract
Previous studies demonstrate that rework can lead to more safety incidents. However, there is an inadequate understanding of how construction rework reduction measures may significantly decrease the likelihood of safety incidents in developing countries. To explore how construction organisations can integrate rework minimisation and safety management in practice, this study examines the effectiveness of the management strategies that can reduce rework and improve safety. Based on a two-stage detailed literature review of both rework- and safety-related studies, 13 managerial measures are recognised that are capable of jointly reducing rework and safety incidents for construction projects. A field survey involving construction professionals in Malaysia was used to analyse and rank these measures according to effectiveness indices for rework, safety and joint rework-safety management. Factor analysis yielded a two-factor solution comprising (1) project management best practices and (2) proactive competency management. It is suggested that the construction industry would benefit from simultaneously ameliorating the quality and safety performance of projects by adopting effective joint measures that are predominantly guided by process (best practices) and people (competency management) components.
Keyword : rework, safety management, project management, construction industry, best practice
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahiaga-dagbui, D. D., Tokede, O., Morrison, J., & Chirnside, A. (2020). Building high-performing and integrated project teams. Engineering, Construction and Architectural Management, 27(10), 3341–3361. https://doi.org/10.1108/ECAM-04-2019-0186
Ahmed, R., & Anantatmula, V. S. (2017). Empirical study of project managers leadership competence and project performance. Engineering Management Journal, 29(3), 189–205. https://doi.org/10.1080/10429247.2017.1343005
Ajayi, S. O., Adegbenro, O. O., Alaka, H. A., Oyegoke, A. S., & Manu, P. A. (2021). Addressing behavioural safety concerns on Qatari Mega projects. Journal of Building Engineering, 41, 102398. https://doi.org/10.1016/j.jobe.2021.102398
Anantatmula, V. S., & Rad, P. F. (2018). Role of organizational project management maturity factors on project success. Engineering Management Journal, 30(3), 165–178. https://doi.org/10.1080/10429247.2018.1458208
Asadi, R., Wilkinson, S., & Rotimi, J. O. B. (2021). The common causes of rework in construction contracts: a diagnostic approach. Journal of Engineering, Design and Technology. https://doi.org/10.1108/JEDT-04-2021-0215
Au, C. M., Saipol, B. A.-K., & Mohd, S. M. D. (2018). The need for a competencies’ assessment framework for the Malaysian construction project managers. Journal of Surveying, Construction and Property, 9(1), 57–74. https://doi.org/10.22452/jscp.vol9no1.6
Ayob, A., Shaari, A. A., Zaki, M. F. M., & Munaaim, M. A. C. (2018). Fatal occupational injuries in the Malaysian construction sector – causes and accidental agents. IOP Conference Series: Earth and Environmental Science, 140, 012095. https://doi.org/10.1088/1755-1315/140/1/012095
Bagaya, O., & Song, J. (2016). Empirical study of factors influencing schedule delays of public construction projects in Burkina Faso. Journal of Management in Engineering, 32(5), 05016014. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000443
Ballesteros-Sánchez, L., Ortiz-Marcos, I., & Rodríguez-Rivero, R. (2019). The impact of executive coaching on project managers’ personal competencies. Project Management Journal, 50(3), 306–321. https://doi.org/10.1177/8756972819832191
Bavafa, A., Mahdiyar, A., & Marsono, A. K. (2018). Identifying and assessing the critical factors for effective implementation of safety programs in construction projects. Safety Science, 106, 47–56. https://doi.org/10.1016/j.ssci.2018.02.025
Berlak, J., Hafner, S., & Kuppelwieser, V. G. (2021). Digitalization’s impacts on productivity: a model- based approach and evaluation in Germany’s building construction industry. Production Planning & Control, 32(4), 335–345. https://doi.org/10.1080/09537287.2020.1740815
Chen, Q., & Jin, R. (2013). Multilevel safety culture and climate survey for assessing new safety program. Journal of Construction Engineering and Management, 139(7), 805–817. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000659
Cheng, E. W. l., Li, H., Fang, D. P., & Xie, F. (2004). Construction safety management: An exploratory study from China. Construction Innovation, 4(4), 229–241. https://doi.org/10.1108/14714170410815114
Chiu, Y. S. P., Wu, C. S., Wu, H. Y., & Chiu, S. W. (2021). Studying the effect of stochastic breakdowns, overtime, and rework on inventory replenishment decision. Alexandria Engineering Journal, 60(1), 1627–1637. https://doi.org/10.1016/j.aej.2020.11.014
Construction Industry Institute. (2012). CII best practices guide: Improving project performance. Construction Industry Institute, Austin, Texas.
Damoah, I. S., & Kumi, D. K. (2018). Causes of government construction projects failure in an emerging economy: Evidence from Ghana. International Journal of Managing Projects in Business, 11(3), 558–582. https://doi.org/10.1108/IJMPB-04-2017-0042
Das, A., Pagell, M., Behm, M., & Veltri, A. (2008). Toward a theory of the linkages between safety and quality. Journal of Operations Management, 26(4), 521–535. https://doi.org/10.1016/j.jom.2007.06.005
Demirkesen, S., & Arditi, D. (2015). Construction safety personnel’s perceptions of safety training practices. International Journal of Project Management, 33(5), 1160–1169. https://doi.org/10.1016/j.ijproman.2015.01.007
Doloi, H. (2008). Analysing the novated design and construct contract from the client’s, design team’s and contractor’s perspectives. Construction Management and Economics, 26(11), 1181–1196. https://doi.org/10.1080/01446190802512359
Doloi, H. (2009). Analysis of pre-qualification criteria in contractor selection and their impacts on project success. Construction Management and Economics, 27(12), 1245–1263. https://doi.org/10.1080/01446190903394541
Dulaimi, M. F., Ling, F. Y. Y., & Bajracharya, A. (2003). Organizational motivation and inter-organizational interaction in construction innovation in Singapore. Construction Management and Economics, 21(3), 307–318. https://doi.org/10.1080/0144619032000056144
Durdyev, S., Mohamed, S., Lay, M. L., & Ismail, S. (2017). Key factors affecting construction safety performance in developing countries: Evidence from Cambodia. Construction Economics and Building, 17(4), 48–65. https://doi.org/10.5130/AJCEB.v17i4.5596
Emuze, F., Smallwood, J., & Han, S. (2014). Factors contributing to non-value adding activities in South African construction. Journal of Engineering, Design and Technology, 12(2), 223–243. https://doi.org/10.1108/JEDT-07-2011-0048
Fong, P. S., & Lung, B. W. (2007). Interorganizational teamwork in the construction industry. Journal of Construction Engineering and Management, 133(2), 157–168. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:2(157)
Garg, S., & Misra, S. (2021). Causal model for rework in building construction for developing countries. Journal of Building Engineering, 43, 103180. https://doi.org/10.1016/j.jobe.2021.103180
Ghodrati, N., Yiu, T. W., Wilkinson, S., & Shahbazpour, M. (2018). Role of management strategies in improving labor productivity in general construction projects in New Zealand: Managerial perspective. Journal of Management in Engineering, 34(6), 04018035. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000641
Golizadeh, H., Hon, C. K. H., Drogemuller, R., & Reza Hosseini, M. (2018). Digital engineering potential in addressing causes of construction accidents. Automation in Construction, 95, 284–295. https://doi.org/10.1016/j.autcon.2018.08.013
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage Learning, Hampshire, United Kingdom.
Hallowell, M. R., & Gambatese, J. A. (2009). Construction safety risk mitigation. Journal of Construction Engineering and Management, 135(12), 1316–1323. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000107
Han, S., Saba, F., Lee, S., Mohamed, Y., & Peña-Mora, F. (2014). Toward an understanding of the impact of production pressure on safety performance in construction operations. Accident Analysis and Prevention, 68, 106–116. https://doi.org/10.1016/j.aap.2013.10.007
Haslam, R. A., Hide, S. A., Gibb, A. G. F., Gyi, D. E., Pavitt, T., Atkinson, S., & Duff, A. R. (2005). Contributing factors in construction accidents. Applied Ergonomics, 36, 401–415. https://doi.org/10.1016/j.apergo.2004.12.002
Hoffmeister, K., Cigularov, K. P., Sampson, J., Rosecrance, J. C., & Chen, P. Y. (2011). A perspective on effective mentoring in the construction industry. Leadership and Organization Development Journal, 32(7), 673–688. https://doi.org/10.1108/01437731111169997
Hon, C. K. H., Chan, A. P. C., & Wong, F. K. W. (2010). An analysis for the causes of accidents of repair, maintenance, alteration and addition works in Hong Kong. Safety Science, 48(7), 894–901. https://doi.org/10.1016/j.ssci.2010.03.013
Hwang, B.-G., & Yang, S. (2014). Rework and schedule performance: A profile of incidence, impact, causes and solutions. Engineering, Construction and Architectural Management, 21(2), 190–205. https://doi.org/10.1108/ECAM-10-2012-0101
Hwang, B. G., Zhao, X., & Goh, K. J. (2014). Investigating the client-related rework in building projects: The case of Singapore. International Journal of Project Management, 32(4), 698–708. https://doi.org/10.1016/j.ijproman.2013.08.009
Jarkas, A. M., & Haupt, T. C. (2015). Major construction risk factors considered by general contractors in Qatar. Journal of Engineering, Design and Technology, 13(1), 165–194. https://doi.org/10.1108/JEDT-03-2014-0012
Jergeas, G., & Van der Put, J. (2001). Benefits of constructability on construction projects. Journal of Construction Engineering and Management, 127(4), 281–290. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:4(281)
Jiang, Z., Fang, D., & Zhang, M. (2015). Understanding the causation of construction workers’ unsafe behaviors based on system dynamics modeling. Journal of Management in Engineering, 31(6), 04014099. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000350
Josephson, P. E., & Hammarlund, Y. (1999). Causes and costs of defects in construction: A study of seven building projects. Automation in Construction, 8(6), 681–687. https://doi.org/10.1016/S0926-5805(98)00114-9
Kakitahi, J. M., Alinaitwe, H. M., Landin, A., & Mone, S. J. (2016). Impact of construction-related rework on selected Ugandan public projects. Journal of Engineering, Design and Technology, 14(2), 238–251. https://doi.org/10.1108/JEDT-02-2014-0006
Kaliba, C., Muya, M., & Mumba, K. (2009). Cost escalation and schedule delays in road construction projects in Zambia. International Journal of Project Management, 27(5), 522–531. https://doi.org/10.1016/j.ijproman.2008.07.003
Kang, Y., Jin, Z., Hyun, C., & Park, H. (2018). Construction management functions for developing countries: Case of Cambodia. Journal of Management in Engineering, 34(3), 05018004. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000609
Kartam, N. A., Flood, I., & Koushki, P. (2000). Construction safety in Kuwait: Issues, procedures, problems, and recommendations. Safety Science, 36(3), 163–184. https://doi.org/10.1016/S0925-7535(00)00041-2
Kath, L. M., Marks, K. M., & Ranney, J. (2010). Safety climate dimensions, leader-member exchange, and organizational support as predictors of upward safety communication in a sample of rail industry workers. Safety Science, 48(5), 643–650. https://doi.org/10.1016/j.ssci.2010.01.016
Kheni, N. A., Gibb, A. G. F., & Dainty, A. R. J. (2010). Health and safety management within small- and medium-sized enterprises (SMEs) in developing countries: Study of contextual influences. Journal of Construction Engineering and Management, 136(10), 1104–1115. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000218
Kivrak, S., Arslan, G., Dikmen, I., & Birgonul, M. T. (2008). Capturing knowledge in construction projects: Knowledge platform for contractors. Journal of Management in Engineering, 24(2), 87–95. https://doi.org/10.1061/(ASCE)0742-597X(2008)24:2(87)
Le-Hoai, L., Lee, Y. D., & Lee, J. Y. (2008). Delay and cost overruns in Vietnam large construction projects: A comparison with other selected countries. KSCE Journal of Civil Engineering, 12(6), 367–377. https://doi.org/10.1007/s12205-008-0367-7
Li, Y., Ning, Y., & Chen, W. T. (2018). Critical success factors for safety management of high-rise building construction projects in China. Advances in Civil Engineering, Article ID 1516354. https://doi.org/10.1155/2018/1516354
Liu, Q., Ye, G., Feng, Y., Wang, C., & Peng, Y. (2020). Case-based insights into rework costs of residential building projects in China. International Journal of Construction Management, 20(4), 347–355. https://doi.org/10.1080/15623599.2018.1484856
Loushine, T. W., Hoonakker, P. L. T., Carayon, P., & Smith, M. J. (2006). Quality and safety management in construction. Total Quality Management and Business Excellence, 17(9), 1171–1212. https://doi.org/10.1080/14783360600750469
Love, P. E. D. (2002). Influence of project type and procurement method on rework costs in building construction projects. Journal of Construction Engineering and Management, 128(1), 18–29. https://doi.org/10.1061/(ASCE)0733-9364(2002)128:1(18)
Love, P. E. D. (2020). Creating a mindfulness to Learn from errors: Enablers of rework containment and reduction in construction. Developments in the Built Environment, 1, 100001. https://doi.org/10.1016/j.dibe.2019.100001
Love, P. E. D., & Edwards, D. J. (2004). Forensic project management: The underlying causes of rework in construction projects. Civil Engineering and Environmental Systems, 21(3), 207–228. https://doi.org/10.1080/10286600412331295955
Love, P. E. D., & Smith, J. (2016). Error management: Implications for construction. Construction Innovation, 16(4), 418–424. https://doi.org/10.1108/CI-01-2016-0001
Love, P. E. D., & Smith, J. (2018). Unpacking the ambiguity of rework in construction: Making sense of the literature. Civil Engineering and Environmental Systems, 35(1–4), 180–203. https://doi.org/10.1080/10286608.2019.1577396
Love, P. E. D., Irani, Z., & Edwards, D. J. (2004). A rework reduction model for construction projects. IEEE Transactions on Engineering Management, 51(4), 426–440. https://doi.org/10.1109/TEM.2004.835092
Love, P. E. D., Ackermann, F., Teo, P., & Morrison, J. (2015). From individual to collective learning: a conceptual learning framework for enacting rework prevention. Journal of Construction Engineering and Management, 141(11), 05015009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001013
Love, P. E. D., Ackermann, F., Carey, B., Morrison, J., Ward, M., & Park, A. (2016). Praxis of rework mitigation in construction. Journal of Management in Engineering, 32(5), 05016010. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000442
Love, P. E. D., Smith, J., & Teo, P. (2018a). Putting into practice error management theory: Unlearning and learning to manage action errors in construction. Applied Ergonomics, 69, 104–111. https://doi.org/10.1016/j.apergo.2018.01.007
Love, P. E. D., Teo, P., Ackermann, F., Smith, J., Alexander, J., Palaneeswaran, E., & Morrison, J. (2018b). Reduce rework, improve safety: an empirical inquiry into the precursors to error in construction. Production Planning & Control, 29(5), 353–366. https://doi.org/10.1080/09537287.2018.1424961
Love, P. E. D., Smith, J., Ackermann, F., Irani, Z., Fang, W., Luo, H., & Ding, L. (2019). Houston, we have a problem! Understanding the tensions between quality and safety in construction. Production Planning & Control, 30(16), 1354–1365. https://doi.org/10.1080/09537287.2019.1617908
Love, P. E. D., Matthews, J., & Fang, W. (2020). Rework in construction: A focus on error and violation. Journal of Construction Engineering and Management, 146(9), 0602001. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001901
Mahamid, I. (2022). Impact of rework on material waste in building construction projects. International Journal of Construction Management, 22(8), 1500–1507. https://doi.org/10.1080/15623599.2020.1728607
Maskuriy, R., Selamat, A., Ali, K. N., Maresova, P., & Krejcar, O. (2019). Industry 4.0 for the construction industry – How ready is the industry?. Applied Sciences, 9(14), 2819. https://doi.org/10.3390/app9142819
Mckinsey Global Institute. (2017). Reinventing construction: A route to higher productivity. Washington, DC, USA.
Mitropoulos, P., Cupido, G., & Namboodiri, M. (2009). Cognitive approach to construction safety: Task demand-capability model. Journal of Construction Engineering and Management, 135(9), 881–889. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000060
Mitropoulos, P. T., & Cupido, G. (2009). The role of production and teamwork practices in construction safety: A cognitive model and an empirical case study. Journal of Safety Research, 40(4), 265–275. https://doi.org/10.1016/j.jsr.2009.05.002
Mohammadi, A., Tavakolan, M., & Khosravi, Y. (2018). Factors influencing safety performance on construction projects: A review. Safety Science, 109, 382–397. https://doi.org/10.1016/j.ssci.2018.06.017
Nowotarski, P., & Paslawski, J. (2017). Industry 4.0 concept introduction into construction SMEs. IOP Conference Series: Materials Science and Engineering, 245, 052043. https://doi.org/10.1088/1757-899X/245/5/052043
Oswald, D., Ahiaga-Dagbui, D. D., Sherratt, F., & Smith, S. D. (2020). An industry structured for unsafety? An exploration of the cost-safety conundrum in construction project delivery. Safety Science, 122, 104535. https://doi.org/10.1016/j.ssci.2019.104535
Oyewobi, L. O., Abiola-Falemu, O., & Ibironke, O. T. (2016). The impact of rework and organisational culture on project delivery. Journal of Engineering, Design and Technology, 14(2), 214–237. https://doi.org/10.1108/JEDT-05-2013-0038
Pereira, E., Ahn, S., Han, S., & Abourizk, S. (2020). Finding causal paths between safety management system factors and accident precursors. Journal of Management in Engineering, 36(2), 04019049. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000738
Podgórski, D. (2010). The use of tacit knowledge in occupational safety and health management systems. International Journal of Occupational Safety and Ergonomics, 16(3), 283–310. https://doi.org/10.1080/10803548.2010.11076845
Project Management Institute. (2017). A guide to the project management body of knowledge (PMBOK Guide). Project Management Institute, Inc, Newtown Square, Pennsylvania, USA.
Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences. Holt, Rinehart and Winston, New York.
Safapour, E., & Kermanshachi, S. (2019). Identifying early indicators of manageable rework causes and selecting mitigating best practices for construction. Journal of Management in Engineering, 35(2), 04018060. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000669
Shahparvari, M., Robinson, H., Fong, D., & Ebohon, O. J. (2019). Exploiting automated technologies for reduction of rework in construction housing supply chain. In Proceedings of the Creative Construction Conference (2019) (pp. 48–54), Budapest, Hungary. https://doi.org/10.3311/CCC2019-008
Shi, L., Ye, K., Lu, W., & Hu, X. (2014). Improving the competence of construction management consultants to underpin sustainable construction in China. Habitat International, 41, 236–242. https://doi.org/10.1016/j.habitatint.2013.08.002
Tam, C. M., Zeng, S. X., & Deng, Z. M. (2004). Identifying elements of poor construction safety management in China. Safety Science, 42(7), 569–586. https://doi.org/10.1016/j.ssci.2003.09.001
Toor, S.-R., & Ogunlana, S. O. (2008). Critical COMs of success in large-scale construction projects: Evidence from Thailand construction industry. International Journal of Project Management, 26(4), 420–430. https://doi.org/10.1016/j.ijproman.2007.08.003
Umeokafor, N. (2018). An investigation into public and private clients’ attitudes, commitment and impact on construction health and safety in Nigeria. Engineering, Construction and Architectural Management, 25(6), 798–815. https://doi.org/10.1108/ECAM-06-2016-0152
Usukhbayar, R., & Choi, J. (2020). Critical safety factors influencing on the safety performance of construction projects in Mongolia. Journal of Asian Architecture and Building Engineering, 19(6), 600–612. https://doi.org/10.1080/13467581.2020.1770095
Votano, S., & Sunindijo, R. Y. (2014). Client safety roles in small and medium construction projects in Australia. Journal of Construction Engineering and Management, 140(9), 04014045. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000899
Vredenburgh, A. G. (2002). Organizational safety: Which management practices are most effective in reducing employee injury rates?. Journal of Safety Research, 33(2), 259–276. https://doi.org/10.1016/S0022-4375(02)00016-6
Wan, S. K. M., Kumaraswamy, M., & Liu, D. T. C. (2013). Dynamic modelling of building services projects: A simulation model for real-life projects in the Hong Kong construction industry. Mathematical and Computer Modelling, 57(9–10), 2054–2066. https://doi.org/10.1016/j.mcm.2011.06.070
Wanberg, J., Harper, C., Hallowell, M. R., & Rajendran, S. (2013). Relationship between construction safety and quality performance. Journal of Construction Engineering and Management, 139(10), 04013003. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000732
Wang, T. K., Ford, D. N., Chong, H. Y., & Zhang, W. (2018). Causes of delays in the construction phase of Chinese building projects. Engineering, Construction and Architectural Management, 25(11), 1534–1551. https://doi.org/10.1108/ECAM-10-2016-0227
Williams, J., Fugar, F., & Adinyira, E. (2020). Assessment of health and safety culture maturity in the construction industry in developing economies: A case of Ghanaian construction industry. Journal of Engineering, Design and Technology, 18(4), 865–881. https://doi.org/10.1108/JEDT-06-2019-0151
Xia, N., Zou, P. X. W., Griffin, M. A., Wang, X., & Zhong, R. (2018). Towards integrating construction risk management and stakeholder management: A systematic literature review and future research agendas. International Journal of Project Management, 36(5), 701–715. https://doi.org/10.1016/j.ijproman.2018.03.006
Yap, J. B. H., & Chow, I. N. (2020). Investigating the managerial “nuts and bolts” for the construction industry. Built Environment Project and Asset Management, 10(3), 331–348. https://doi.org/10.1108/BEPAM-10-2019-0094
Yap, J. B. H., & Lee, W. K. (2020). Analysing the underlying factors affecting safety performance in building construction. Production Planning & Control, 31(13), 1061–1076. https://doi.org/10.1080/09537287.2019.1695292
Yap, J. B. H., & Skitmore, M. (2020). Ameliorating time and cost control with project learning and communication management Leveraging on reusable knowledge assets. International Journal of Managing Projects in Business, 13(4), 767–792. https://doi.org/10.1108/IJMPB-02-2019-0034
Yap, J. B. H., Low, P. L., & Wang, C. (2017). Rework in Malaysian building construction: Impacts, causes and potential solutions. Journal of Engineering, Design and Technology, 15(5), 591–618. https://doi.org/10.1108/JEDT-01-2017-0002
Yap, J. B. H., Abdul-Rahman, H., & Wang, C. (2018). Preventive mitigation of overruns with project communication management and continuous learning: PLS-SEM approach. Journal of Construction Engineering and Management, 144(5), 04018025. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001456
Yap, J. B. H., Chow, I. N., & Shavarebi, K. (2019a). Criticality of construction industry problems in developing countries: Analyzing Malaysian projects. Journal of Management in Engineering, 35(5), 04019020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000709
Yap, J. B. H., Skitmore, M., Gray, J., & Shavarebi, K. (2019b). Systemic view to understanding design change causation and exploitation of communications and knowledge. Project Management Journal, 50(3), 288–305. https://doi.org/10.1177/8756972819829641
Yap, J. B. H., Chong, J. R., Skitmore, M., & Lee, W. P. (2020). Rework causation that undermines safety performance during production in construction. Journal of Construction Engineering and Management, 146(9), 04020106. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001902
Yap, J. B. H., Goay, P. L., Woon, Y. B., & Skitmore, M. (2021). Revisiting critical delay factors for construction : Analysing projects in Malaysia. Alexandria Engineering Journal, 60(1), 1717–1729. https://doi.org/10.1016/j.aej.2020.11.021
Ye, G., Jin, Z., Xia, B., & Skitmore, M. (2014). Analyzing causes for reworks in construction projects in China. Journal of Management in Engineering, 31(6), 04014097. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000347
Yong, Y. C., & Mustaffa, N. E. (2013). Critical success factors for Malaysian construction projects: An empirical assessment. Construction Management and Economics, 31(9), 959–978. https://doi.org/10.1080/01446193.2013.828843
Zhang, S., Duan, H., Zhao, X., Xia, B., Feng, Y., & Galvin, S. (2019). Learning on rework management of construction projects: A case study. International Journal of Construction Management, 21(3), 246–260. https://doi.org/10.1080/15623599.2018.1521361
Zhao, T., Kazemi, S. E., Liu, W., & Zhang, M. (2018). The last mile: Safety management implementation in construction sites. Advances in Civil Engineering, Article ID 4901707. https://doi.org/10.1155/2018/4901707
Zou, P. X. W. (2011). Fostering a strong construction safety culture. Leadership and Management in Engineering, 11(1), 11–22. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000093