Mechanical properties of a new fully prefabricated staggered flip-down slab
Abstract
Prefabricated slab has been widely used in the global construction industry due to energy saving, environmental protection, and good economic advantages. In this paper, a new type of fully prefabricated staggered flip-down slab without cast-in-situ operation has been proposed. First, the experiments were carried out on the new slab. The structural performance of the new slab was compared with the cast-in-situ slabs and composite slabs of the same specification. The experimental results showed that the ultimate bearing capacity of the new slab meets the requirements for practical utilization. On this basis, an additional CFRP sheet could be pasted on the bottom initial seam between prefabricated slabs to enhance the integrity and prevent cracks. Then, the whole loading process of the slab was simulated, and the results were consistent with the experimental results. Finally, through experiments and parametric analysis, recommendations for improvement were put forward to enhance the mechanical properties of this kind of slab.
Keyword : fully prefabricated staggered flip-down slab, bending test, mechanical properties, finite element analysis, parametric analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Chen, Y., Shi, H., Wang, C., Wu, J., & Liao, Z. (2022). Flexural mechanism and design method of novel precast concrete slabs with crossed bent-up rebar. Journal of Building Engineering, 50, 104216. https://doi.org/10.1016/j.jobe.2022.104216
Crocetti, R., Sartori, T., Tomasi, R., & Cabo, J. L. (2014). An innovative prefabricated timber-concrete composite system. In S. Aicher, H. W. Reinhardt, & H. Garrecht (Eds.), RILEM bookseries: Vol. 9. Materials and joints in timber structures. (pp. 507–516). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7811-5_47
Crocetti, R., Sartori, T., & Tomasi, R. (2015). Innovative timber-concrete composite structures with prefabricated FRC slabs. Journal of Structural Engineering, 141(9), 04014224. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001203
Dal Lago, B., Taylor, S. E., Deegan, P., Ferrara, L., Sonebi, M., Crosset, P., & Pattarini, A. (2017). Full-scale testing and numerical analysis of a precast fibre reinforced self-compacting concrete slab pre-stressed with basalt fibre reinforced polymer bars. Composites Part B: Engineering, 128, 120–133. https://doi.org/10.1016/j.compositesb.2017.07.004
de Seixas Leal, L. A. A., & de Miranda Batista, E. (2020). Composite floor system with cold‐formed trussed beams and prefabricated concrete slab: Selected and extended contribution of SDSS 2019. Steel Construction, 13(1), 12–21. https://doi.org/10.1002/stco.201900046
Goodier, C., & Gibb, A. (2007). Future opportunities for offsite in the UK. Construction Management and Economics, 25(6), 585–595. https://doi.org/10.1080/01446190601071821
Hassan, M. K., Subramanian, K. B., Saha, S., & Sheikh, M. N. (2021). Behaviour of prefabricated steel-concrete composite slabs with a novel interlocking system – numerical analysis. Engineering Structures, 245, 112905. https://doi.org/10.1016/j.engstruct.2021.112905
Heaton, A. (2017, November 9). Australia must break through prefabrication barriers. Sourceable. https://sourceable.net/australia-must-break-through-prefabrication-barriers
Huang, H., Wu, F., Zhu, M., Zeng, C., & Lv, W. (2015). Influence of rib details on flexural behavior of concrete composite slab with precast prestressed ribbed panel. Journal of Building Structures, 36(10), 66–72 (in Chinese). https://doi.org/10.14006/j.jzjgxb.2015.10.008
Jiang, Q., Wang, X., Liu, H., & Huang, S. (2003). Calculating method for bearing load capacity of RC invertible “T” slab-composite slab. Journal of Central South University of Technology (Natural Science), 34(5), 567–570 (in Chinese). https://doi.org/10.3969/j.issn.1672-7207.2003.05.026
Lima, P. R., Barros, J. A., Roque, A. B., Fontes, C. M., & Lima, J. M. (2018). Short sisal fiber reinforced recycled concrete block for one-way precast concrete slabs. Construction and Building Materials, 187, 620–634. https://doi.org/10.1016/j.conbuildmat.2018.07.184
Liu, H., & Jiang, Q. (2004). Experiment of inverted “T” simply supported composite slab. Journal of Central South University (Science and Technology), 35(1), 147–150 (in Chinese). https://doi.org/10.3969/j.issn.1672-7207.2004.01.029
Liu, J., Hu, H., Li, J., Chen, Y. F., & Zhang, L. (2020). Flexural behavior of prestressed concrete composite slab with precast inverted T-shaped ribbed panels. Engineering Structures, 215, 110687. https://doi.org/10.1016/j.engstruct.2020.110687
Lu, L., Ding, Y., Guo, Y., Hao, H., & Ding, S. (2022). Flexural performance and design method of the prefabricated RAC composite slab. Structures, 38, 572–584. https://doi.org/10.1016/j.istruc.2022.02.022
Lukaszewska, E., Fragiacomo, M., & Johnsson, H. (2010). Laboratory tests and numerical analyses of prefabricated timber-concrete composite floors. Journal of Structural Engineering, 136(1), 46–55. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000080
Mansour, F. R., Bakar, S. A., Ibrahim, I. S., Marsono, A. K., & Marabi, B. (2015). Flexural performance of a precast concrete slab with steel fiber concrete topping. Construction and Building Materials, 75, 112–120. https://doi.org/10.1016/j.conbuildmat.2014.09.112
May, S., Steinbock, O., Michler, H., & Curbach, M. (2019). Precast slab structures made of carbon reinforced concrete. Structures, 18, 20–27. https://doi.org/10.1016/j.istruc.2018.11.005
Meng, X., Cheng, S., & El Ragaby, A. (2016). Experimental study on a novel shear strengthening technique for precast prestressed hollow-core slabs. In Resilient infrastructure (pp. STR-946-1–STR-946-9). London, UK.
Navaratnam, S., Ngo, T., Gunawardena, T., & Henderson, D. (2019). Performance review of prefabricated building systems and future research in Australia. Buildings, 9(2), 38. https://doi.org/10.3390/buildings9020038
Nguyen, P. A., Kim, J., Oh, J., Park, Y., & Lee, D. (2021). Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations. Structural Engineering and Mechanics, 79(6), 737–748. https://doi.org/10.12989/sem.2021.79.6.737
Rochman, T., Rasidi, N., & Purnomo, F. (2021). The flexural performance of lightweight foamed precast concrete slabs: Experimental and analysis. GEOMATE Journal, 20(77), 24–32. https://doi.org/10.21660/2020.77.26463
State Council of the People’s Republic of China. (2016). Some opinions of the CPC Central Committee and the State Council on further strengthening the management of urban planning and construction (in Chinese).
Steinhardt, D. A., & Manley, K. (2016). Adoption of prefabricated housing – the role of country context. Sustainable Cities and Society, 22, 126–135. https://doi.org/10.1016/j.scs.2016.02.008
Tam, V. W., & Hao, J. J. (2014). Prefabrication as a mean of minimizing construction waste on site. International Journal of Construction Management, 14(2), 113–121. https://doi.org/10.1080/15623599.2014.899129
Tam, V. W., Tam, C. M., & Ng, W. C. (2007). An examination on the practice of adopting prefabrication for construction projects. International Journal of Construction Management, 7(2), 53–64. https://doi.org/10.1080/15623599.2007.10773102
Wang, Z., Li, P., & Tan, X. (2019). Advantages and disadvantages of prefabricated construction and improvement measures. Sichuan Building Materials, 45(3), 39–40 (in Chinese). https://doi.org/10.3969/j.issn.1672-4011.2019.03.019
Xu, Q., Liu, J., & Li, N. (2022). Discussion on application of full precast slab in prefabricated high-rise residential buildings. Guangdong Architecture Civil Engineering, 29(1), 35–38+69 (in Chinese). https://doi.org/10.19731/j.gdtmyjz.2022.01.009