Share:


Bibliometric mapping of MCDM methods in AEC industry: identifying trends for sustainable development

    Thilina Ganganath Weerakoon Affiliation
    ; Zenonas Turskis Affiliation
    ; Jūratė Šliogerienė Affiliation

Abstract

This study investigates integrating multi-criteria decision-making (MCDM) approaches to improve sustainability in the architecture, engineering, and construction (AEC) industry. Through a systemic literature analysis done through the Scopus database and the visualization of key elements through VOSViewer, the study examines the applications of MCDM in sustainable construction, with particular attention to material selection, contractor procurement, waste management, risk assessment, and technological integration, which are essential elements towards sustainable development of the AEC industry. The results highlight how common and successful hybrid MCDM and MADM methods are. These approaches provide all-encompassing answers to challenging problems, from project mitigation to material procurement. The evaluation emphasizes the value of MCDM methods in supporting sustainable practices across the construction lifecycle, streamlining supply chains, and enabling well-informed decision-making. In the end, this study emphasizes how critical it is to carry out further research and apply MCDM frameworks to promote sustainable development in the construction sector and balance development objectives with the protection of the environment and the welfare of society.

Keyword : hybrid decision-making, bibliometric trends, sustainable construction, multi-criteria decision-making

How to Cite
Weerakoon, T. G., Turskis, Z., & Šliogerienė, J. (2025). Bibliometric mapping of MCDM methods in AEC industry: identifying trends for sustainable development. Journal of Environmental Engineering and Landscape Management, 33(2), 148–165. https://doi.org/10.3846/jeelm.2025.23569
Published in Issue
Apr 23, 2025
Abstract Views
0
PDF Downloads
0
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abadi, M., & Moore, D. (2022). Selection of circular proposals in building projects: An MCDM model for lifecycle circularity assessments using AHP. Buildings, 12(8), Article 1110. https://doi.org/10.3390/buildings12081110

Afshari, A. R., Nikolić, M., & Akbari, Z. (2017). Personnel selection using group fuzzy AHP and SAW methods. Journal of Engineering Management and Competitiveness, 7(1), 3–10. https://doi.org/10.5937/jemc1701003A

Aghazadeh, E., Yildirim, H., & Kuruoglu, M. (2022). A hybrid fuzzy MCDM methodology for optimal structural system selection compatible with sustainable materials in mass-housing projects. Sustainability, 14(20), Article 13559. https://doi.org/10.3390/su142013559

Ahmad, M., Zhao, Z., & Li, H. (2019). Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Science of the Total Environment, 657, 1085–1098. https://doi.org/10.1016/j.scitotenv.2018.12.112

Akhanova, G., Nadeem, A., Kim, J. R., & Azhar, S. (2020). A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustainable Cities and Society, 52, Article 101842. https://doi.org/10.1016/j.scs.2019.101842

Alaloul, W. S., Musarat, M. A., Rabbani, M. B. A., Iqbal, Q., Maqsoom, A., & Farooq, W. (2021). Construction sector contribution to economic stability: Malaysian GDP distribution. Sustainability, 13(9), Article 5012. https://doi.org/10.3390/su13095012

Amponsah, C. T. (2013). An integrated approach for prioritizing projects for implementation using AHP. ISAHP Proceedings (pp. 1–10). https://doi.org/10.13033/isahp.y2013.019

Ashtiani, M., & Azgomi, M. A. (2014). Trust modeling based on a combination of fuzzy analytic hierarchy process and fuzzy VIKOR. Soft Computing, 20(1), 399–421. https://doi.org/10.1007/s00500-014-1516-1

Ataei, Y., Mahmoudi, A., Feylizadeh, M. R., & Li, D.-F.(2020). Ordinal Priority Approach (OPA) in multiple attribute decision-making. Applied Soft Computing, 86, Article 105893. https://doi.org/10.1016/j.asoc.2019.105893

Bai, C., & Sarkis, J. (2018). Integrating sustainability into supplier selection: A grey-based TOPSIS analysis. Technological and Economic Development of Economy, 24(6), 2202–2224. https://doi.org/10.3846/tede.2018.5582

Becker, J., Becker, A., & Saabun, W. (2017). Construction and use of the ANP decision model taking into account the experts’ competence. Procedia Computer Science, 112, 2269–2279. https://doi.org/10.1016/j.procs.2017.08.145

Bertoni, M. (2019). Multi-criteria decision making for sustainability and value assessment in early PSS design. Sustainability, 11(7), Article 1952. https://doi.org/10.3390/su11071952

Bolomope, M., Amidu, A., Ajayi, S., & Javed, A. (2022). Decision-making framework for construction clients in selecting appropriate procurement route. Buildings, 12(12), Article 2192. https://doi.org/10.3390/buildings12122192

Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16(1), 5–24. https://doi.org/10.3846/tede.2010.01

Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445–469. https://eudml.org/doc/209425

Brauers, W. K., & Zavadskas, E. K. (2011). MULTIMOORA optimization used to decide on a bank loan to buy property. Technological and Economic Development of Economy, 17(1), 174–188. https://doi.org/10.3846/13928619.2011.560632

Chakraborty, S., & Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making. Informatica, 25(1), 1–20. https://doi.org/10.15388/informatica.2014.01

Chellappa, V., & Ginda, G. (2023). Application of multiple-criteria decision making methods for construction safety research. Proceedings of the Institution of Civil Engineers - Management Procurement and Law, 177(3), 127–136. https://doi.org/10.1680/jmapl.23.00006

Chen, C. (2019). A new multi-criteria assessment model combining GRA techniques with intuitionistic fuzzy entropy-based TOPSIS method for sustainable building materials supplier selection. Sustainability, 11(8), Article 2265. https://doi.org/10.3390/su11082265

Dai, F., & Kang, Y. (2023). Methodology for risk assessment of engineering procurement construction project based on the probabilistic hesitant fuzzy multiple attributes group decision making. Journal of Intelligent and Fuzzy Systems, 45(6), 12255–12266. https://doi.org/10.3233/jifs-231726

Dalkey, N. C., & Helmer, O. (1963). An experimental application of the DELPHI method to the use of experts. Management Science, 9(3), 458–467. https://doi.org/10.1287/mnsc.9.3.458

Darko, A., Chan, A. P., Ameyaw, E. E., Owusu, E. K., Pärn, E., & Edwards, D. J. (2018). Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19(5), 436–452. https://doi.org/10.1080/15623599.2018.1452098

Dehdasht, G., Ferwati, M. S., Zin, R. M., & Abidin, N. Z. (2020). A hybrid approach using entropy and TOPSIS to select key drivers for a successful and sustainable lean construction implementation. PloS One, 15(2), Article e0228746. https://doi.org/10.1371/journal.pone.0228746

Delgado‐Rodríguez, M., & Sillero-Arenas, M. (2018). Systematic review and meta-analysis. Medicina Intensiva, 42(7), 444–453. https://doi.org/10.1016/j.medin.2017.10.003

Ecer, F., Pamučar, D., Zolfani, S. H., & Eshkalag, M. K. (2019). Sustainability assessment of OPEC countries: Application of a multiple attribute decision making tool. Journal of Cleaner Production, 241, Article 118324. https://doi.org/10.1016/j.jclepro.2019.118324

Elshaboury, N., & Marzouk, M. (2020). Optimizing construction and demolition waste transportation for sustainable construction projects. Engineering, Construction and Architectural Management, 28(9), 2411–2425. https://doi.org/10.1108/ecam-08-2020-0636

Enginoğlu, S., Memiş, S., & Karaaslan, F. (2019). A new approach to group decision-making method based on TOPSIS under fuzzy soft environment. Journal of New Results in Science, 8, 42–52.

Erdogan, S. A., Šaparauskas, J., & Turskis, Z. (2019). A multi-criteria decision-making model to choose the best option for sustainable construction management. Sustainability, 11(8), Article 2239. https://doi.org/10.3390/su11082239

Fei, W., Opoku, A., Agyekum, K., Oppon, J. A., Ahmed, V., Chen, C., & Lok, K. L. (2021). The critical role of the construction industry in achieving the Sustainable Development Goals (SDGs): Delivering projects for the common good. Sustainability, 13(16), Article 9112. https://doi.org/10.3390/su13169112

Ferreira, M., Morgado, C. D. R. V., & Lins, M. P. E. (2024). Organizations and stakeholders’ roles and influence on implementing sustainability requirements in construction projects. Heliyon, 10(1), Article e23762. https://doi.org/10.1016/j.heliyon.2023.e23762

Francis, A., & Thomas, A. (2019). Exploring the relationship between lean construction and environmental sustainability: A review of existing literature to decipher broader dimensions. Journal of Cleaner Production, 252, Article 119913. https://doi.org/10.1016/j.jclepro.2019.119913

Freire-Guerrero, A., Alba-Rodríguez, M. D., & Marrero, M. (2019). A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustainable Cities and Society, 51, Article 101737. https://doi.org/10.1016/j.scs.2019.101737

Ghailani, H., Zaidan, A. A., Qahtan, S., Alsattar, H. A., Al-Emran, M., Deveci, M., & Delen, D. (2023). Developing sustainable management strategies in construction and demolition wastes using a q-rung orthopair probabilistic hesitant fuzzy set-based decision modelling approach. Applied Soft Computing, 145, Article 110606. https://doi.org/10.1016/j.asoc.2023.110606

Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/informatica.2015.57

Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antuchevičienė, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25–44. https://EconPapers.repec.org/RePEc:cys:ecocyb:v:50:y:2016:i:3:p:25-44

Goh, C. S., Ting, J. N., & Bajracharya, A. (2023). Exploring social sustainability in the built environment. Advances in Environmental and Engineering Research, 4(01), 1–16. https://doi.org/10.21926/aeer.2301010

Gomes, L. F. A. M., & Lima, M. M. P. P. (1991). TODIMI: Basics and application to multicriteria ranking. Foundations of Computing and Decision Sciences, 16(2), 113–127.

Gurmani, S. H., Chen, H., & Bai, Y. (2022). Multi-attribute group decision-making model for selecting the most suitable construction company using the linguistic interval-valued T-spherical fuzzy TOPSIS method. Applied Intelligence, 53(10), 11768–11785. https://doi.org/10.1007/s10489-022-04103-0

Han, Z., Li, X., Sun, J., Wang, M., & Liu, G. (2023). An interactive multi-criteria decision-making method for building performance design. Energy and Buildings, 282, Article 112793. https://doi.org/10.1016/j.enbuild.2023.112793

Hariram, N. P., Mekha, K. B., Suganthan, V., & Sudhakar, K. (2023). Sustainalism: An integrated Socio-Economic-Environmental model to address sustainable development and sustainability. Sustainability, 15(13), Article 10682. https://doi.org/10.3390/su151310682

Hasheminasab, H., Zolfani, S. H., Kharrazi, M., & Štreimikienė, D. (2022). Combination of sustainability and circular economy to develop a cleaner building industry. Energy and Buildings, 258, Article 111838. https://doi.org/10.1016/j.enbuild.2022.111838

Hatefi, M. A. (2019). Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making. Applied Soft Computing, 74, 643–651. https://doi.org/10.1016/j.asoc.2018.10.050

Hossain, M. U., & Ng, S. T. (2019). Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resources, Conservation and Recycling, 142, 10–23. https://doi.org/10.1016/j.resconrec.2018.11.010

Hsueh, S., Sun, Y., Gao, M., Hu, X., & Meen, T. (2022). Delphi and Analytical Hierarchy Process Fuzzy model for auxiliary decision-making for cross-field learning in landscape design. Sensors and Materials, 34(5), Article 1707. https://doi.org/10.18494/SAM3817

Huang, Y., & Jiang, W. (2017). Extension of TOPSIS method and its application in investment. Arabian Journal for Science and Engineering, 43(2), 693–705. https://doi.org/10.1007/s13369-017-2736-3

Hwang, C., & Yoon, K. (1981). Methods for multiple attribute decision making. In Lecture notes in economics and mathematical systems (pp. 58–191). https://doi.org/10.1007/978-3-642-48318-9_3

Ighravwe, D. E., & Oke, S. A. (2019). A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria. Journal of Building Engineering, 24, Article 100753. https://doi.org/10.1016/j.jobe.2019.100753

İlçe, A. C., & Özkaya, K. (2018). An integrated intelligent system for construction industry: A case study of raised floor material. Technological and Economic Development of Economy, 24(5), 1866–1884. https://doi.org/10.3846/20294913.2017.1334242

Jana, C., & Pal, M. (2021). Extended bipolar fuzzy EDAS approach for multi-criteria group decision-making process. Computational and Applied Mathematics, 40(1), Article 9. https://doi.org/10.1007/s40314-020-01403-4

Janković, A., & Popović, M. (2019). Methods for assigning weights to decision makers in group AHP decision-making. Decision Making, 2(1), 147–165. https://doi.org/10.31181/dmame1901147j

Jato-Espino, D., Castillo-López, E., Rodríguez-Hernández, J., & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162. https://doi.org/10.1016/j.autcon.2014.05.013

Josa, I., Pons, O., De La Fuente, A., & Aguado, A. (2019). Multi-criteria decision-making model to assess the sustainability of girders and trusses: Case study for roofs of sports halls. Journal of Cleaner Production, 249, Article 119312. https://doi.org/10.1016/j.jclepro.2019.119312

Jovanović, S., Savić, S., Jovičić, N., Bošković, G., & Djordjević, N. (2016). Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management. Waste Management & Research, 34(9), 884–895. https://doi.org/10.1177/0734242x16654753

Kabassi, Κ., & Virvou, M. (2004). Personalised adult e-training on computer use based on multiple attribute decision making. Interacting With Computers, 16(1), 115–132. https://doi.org/10.1016/j.intcom.2003.11.006

Karabašević, D., Stanujkić, D., Brzaković, M., & Karabašević, D. (2019). A multiple-criteria decision-making model for the selection of a hotel location. Land Use Policy, 84, 49–58. https://doi.org/10.1016/j.landusepol.2019.03.001

Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12

Klinsky, S., & Mavrogianni, A. (2020). Climate justice and the built environment. Buildings & Cities, 1(1), 412–428. https://doi.org/10.5334/bc.65

Klumbytė, E., Bliūdžius, R., Medineckienė, M., & Fokaides, P. A. (2021). An MCDM model for sustainable decision-making in municipal residential buildings facilities management. Sustainability, 13(5), Article 2820. https://doi.org/10.3390/su13052820

Ley, A., & Lina, A. (2020). Designing software application decision with multi criteria Android-based Analytic Network Process algorithm. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 2(1), 23–31. https://doi.org/10.34306/itsdi.v2i1.349

Lima, L. R. R., Da Trindade, E. L. G., Alencar, L. H., Alencar, M. H., & Silva, L. (2021). Sustainability in the construction industry: A systematic review of the literature. Journal of Cleaner Production, 289, Article 125730. https://doi.org/10.1016/j.jclepro.2020.125730

Liu, L. (2023). Enhanced MABAC method for Pythagorean 2-tuple linguistic MAGDM and their applications to quality evaluation of construction project. Journal of Intelligent and Fuzzy Systems, 45(1), 593–602. https://doi.org/10.3233/jifs-230963

Liu, Y., Wang, H., Liu, D., & Hou, Y. (2023). Method for comprehensive evaluation of urban smart traffic management system based on the 2-tuple linguistic neutrosophic numbers. Neutrosophic Sets and Systems, 53, 75–96. https://doi.org/10.5281/zenodo.7535963

Liu, Z., Pypłacz, P., Ermakova, M., & Konev, P. (2020). Sustainable construction as a competitive advantage. Sustainability, 12(15), Article 5946. https://doi.org/10.3390/su12155946

MacCrimmon, K. R. (1968). Decisionmaking among multiple-attribute alternatives: A survey and consolidated approach. RAND Corporation. https://apps.dtic.mil/sti/pdfs/AD0681005.pdf

Marcher, C., Giusti, A., & Matt, D. T. (2020). Decision support in building construction: A Systematic review of methods and application areas. Buildings, 10(10), Article 170. https://doi.org/10.3390/buildings10100170

Mayhoub, M., Sayad, Z. E., Ali, A., & Ibrahim, M. (2021). Assessment of green building materials’ attributes to achieve sustainable building façades using AHP. Buildings, 11(10), Article 474. https://doi.org/10.3390/buildings11100474

Medineckienė, M., Zavadskas, E. K., Björk, F., & Turskis, Z. (2015). Multi-criteria decision-making system for sustainable building assessment/certification. Archives of Civil and Mechanical Engineering, 15(1), 11–18. https://doi.org/10.1016/j.acme.2014.09.001

Moallemi, E. A., Malekpour, S., Hadjikakou, M., Raven, R., Szetey, K., Ningrum, D., Dhiaulhaq, A., & Bryan, B. A. (2020). Achieving the sustainable development goals requires transdisciplinary innovation at the local scale. One Earth, 3(3), 300–313. https://doi.org/10.1016/j.oneear.2020.08.006

Mukhametzyanov, I. Z., & Pamučar, D. (2018). A sensitivity analysis in MCDM problems: A statistical approach. Decision Making, 1(2), 51–80. https://doi.org/10.31181/dmame1802050m

Musarat, M. A., Alaloul, W. S., & Liew, M. S. (2021). Impact of inflation rate on construction projects budget: A review. Ain Shams Engineering Journal, 12(1), 407–414. https://doi.org/10.1016/j.asej.2020.04.009

Musonda, I., & Okoro, C. (2021). Assessment of current and future critical skills in the South African construction industry. Higher Education, Skills and Work-based Learning, 11(5), 1055–1067. https://doi.org/10.1108/heswbl-08-2020-0177

Niederberger, M., & Spranger, J. (2020). Delphi technique in health sciences: A map. Frontiers in Public Health, 8, Article 457. https://doi.org/10.3389/fpubh.2020.00457

Noman, A. A., Akter, U. H., Pranto, T. H., & Haque, A. B. (2022). Machine learning and artificial intelligence in circular economy: A bibliometric analysis and systematic literature review. Annals of Emerging Technologies in Computing, 6(2), 13–40. https://doi.org/10.33166/aetic.2022.02.002

Ocampo, L., Labrador, J. J. T., Jumao-As, A. M. B., & Rama, A. M. O. (2020). Integrated multiphase sustainable product design with a hybrid quality function deployment – multi-attribute decision-making (QFD-MADM) framework. Sustainable Production and Consumption, 24, 62–78. https://doi.org/10.1016/j.spc.2020.06.013

Opricovic, S. (1998). Multicriteria optimization of civil engineering systems [PhD thesis]. Faculty of Civil Engineering of the University of Belgrade.

Páez, A. (2017). Grey literature: An important resource in systematic reviews. Journal of Evidence-Based Medicine, 10(3), 233–240. https://doi.org/10.1111/jebm.12265

Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation Area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057

Pamučar, D., Yazdani, M., Obradović, R., Kumar, A., & Jimé­nez, M. T. (2020). A novel fuzzy hybrid neutrosophic decision‐making approach for the resilient supplier selection problem. International Journal of Intelligent Systems, 35(12), 1934–1986. https://doi.org/10.1002/int.22279

Patel, P. V., & Patel, A. (2021). Use of sustainable green materials in construction of green buildings for sustainable development. IOP Conference Series: Earth and Environmental Science, 785(1), Article 012009. https://doi.org/10.1088/1755-1315/785/1/012009

Penadés-Plà, V., García-Segura, T., Martí, J. V., & Piqueras, V. Y. (2016). A review of Multi-Criteria Decision-Making Methods applied to the sustainable bridge design. Sustainability, 8(12), Article 1295. https://doi.org/10.3390/su8121295

Peng, X., & Huang, H. (2020). Fuzzy decision making method based on CoCoSo with CRITIC for financial risk evaluation. Technological and Economic Development of Economy, 26(4), 695–724. https://doi.org/10.3846/tede.2020.11920

Pomè, A. P., Tagliaro, C., & Ciaramella, G. (2021). A proposal for measuring in-use buildings’ impact through the ecological footprint approach. Sustainability, 13(1), Article 355. https://doi.org/10.3390/su13010355

Radhakrishnan, S., Erbis, S., Isaacs, J. A., & Kamarthi, S. (2017). Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PloS ONE, 12(3), Article e0172778. https://doi.org/10.1371/journal.pone.0172778

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Roy, B. (1990). The outranking approach and the foundations of ELECTRE methods. In C. A. Bana e Costa (Ed.), Readings in multiple criteria decision aid (pp. 155–183). Springer. https://doi.org/10.1007/978-3-642-75935-2_8

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I

Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. RWS Publications.

Saaty, T. L. (2005). Theory and applications of the analytic network process: Decision making with benefits, opportunities, costs, and risks. https://ci.nii.ac.jp/ncid/BA84752512

Sadeghi, M., Mahmoudi, A., & Deng, X. (2021). Adopting distributed ledger technology for the sustainable construction industry: Evaluating the barriers using Ordinal Priority Approach. Environmental Science and Pollution Research, 29(7), 10495–10520. https://doi.org/10.1007/s11356-021-16376-y

Sadeghi, M., Mahmoudi, A., Deng, X., & Luo, X. (2023). Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology, 20(5), 4991–5012. https://doi.org/10.1007/s13762-022-04298-2

Sánchez-Garrido, A. J., Navarro, I. J., & Piqueras, V. Y. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330, Article 129724. https://doi.org/10.1016/j.jclepro.2021.129724

Schmidt, K., Aumann, I., Hollander, I., Damm, K., & Von Der Schulenburg, J. G. (2015). Applying the Analytic Hierarchy Process in healthcare research: A systematic literature review and evaluation of reporting. BMC Medical Informatics and Decision Making, 15(1), Article 112. https://doi.org/10.1186/s12911-015-0234-7

Sethi, B. B., Maharana, B., & Mohanty, B. K. (2016). Periodical literature bibliometric analysis: A case study of four international journals. Library Philosophy and Practice, 1. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=3699&context=libphilprac

Song, Z., Liu, Q., & Hu, Z. (2020). Decision-making framework, enhanced by mutual inspection for first-stage dam construction diversion scheme selection. Water Resources Management, 34(2), 563–577. https://doi.org/10.1007/s11269-019-02461-y

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry, 11(3), Article 350. https://doi.org/10.3390/sym11030350

Tan, T., Mills, G., Papadonikolaki, E., & Liu, Z. (2021). Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Automation in Construction, 121, Article 103451. https://doi.org/10.1016/j.autcon.2020.103451

Tao, Y., Luo, X., Zhou, J., Wu, Y., Zhang, L., & Liu, Y. (2022). Site selection for underground pumped storage plant using abandoned coal mine through a hybrid multi-criteria decision-making framework under the fuzzy environment: A case in China. Journal of Energy Storage, 56, Article 105957. https://doi.org/10.1016/j.est.2022.105957

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing Evidence‐Informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375

Udomsap, A. D., & Hallinger, P. (2020). A bibliometric review of research on sustainable construction, 1994–2018. Journal of Cleaner Production, 254, Article 120073. https://doi.org/10.1016/j.jclepro.2020.120073

Uzair, M., & Kazmi, S. A. A. (2023). A multi-criteria decision model to support sustainable building energy management system with intelligent automation. Energy and Buildings, 301, Article 113687. https://doi.org/10.1016/j.enbuild.2023.113687

Vakili, S., Ölçer, A. I., & Schönborn, A. (2021). Identification of Shipyard priorities in a multi-criteria decision-making environment through a transdisciplinary energy management framework: A real case study for a Turkish Shipyard. Journal of Marine Science and Engineering, 9(10), Article 1132. https://doi.org/10.3390/jmse9101132

Vasilca, I., Nen, M., Chivu, O. R., Radu, V., Simion, C., & Marinescu, N. (2021). The management of environmental resources in the construction sector: An empirical model. Energies, 14(9), Article 2489. https://doi.org/10.3390/en14092489

Wang, K., Zhang, Y., Goswami, S. S., Yin, Y., & Zhao, Y. (2023). Investigating the role of artificial intelligence technologies in the construction industry using a Delphi-ANP-TOPSIS hybrid MCDM concept under a fuzzy environment. Sustainability, 15(15), Article 11848. https://doi.org/10.3390/su151511848

Weerakoon, T. G., Šliogerienė, J., & Turskis, Z. (2024). Assessing the impact of ai integration on advancing circular practices in construction. Mokslas – Lietuvos ateitis, 16, 1–7. https://doi.org/10.3846/mla.2024.21029

Weerakoon, T. G., Wimalasena, S., & Zvirgzdiņš, J. (2023). Assessment of implementation of circular economy framework in the Sri Lankan construction sector. Baltic Journal of Real Estate Economics and Construction Management, 11(1), 133–152. https://doi.org/10.2478/bjreecm-2023-0009

Wei, L., Tam, V. W., Chen, H., & Du, L. (2020). A holistic review of research on carbon emissions of green building construction industry. Engineering Construction and Architectural Management, 27(5), 1065–1092. https://doi.org/10.1108/ecam-06-2019-0283

Wu, S., Wang, J., Wei, G., & Wei, Y. (2018). Research on construction engineering project risk assessment with some 2-tuple linguistic neutrosophic hamy mean operators. Sustainability, 10(5), Article 1536. https://doi.org/10.3390/su10051536

Wu, W. Y., Shih, H., & Chan, H. (2009). The analytic network process for partner selection criteria in strategic alliances. Expert Systems with Applications, 36(3), 4646–4653. https://doi.org/10.1016/j.eswa.2008.06.049

Xu, C. (2023). An integrated fuzzy group decision-making model for construction enterprise contractor selection based on EDAS method and Information entropy. Journal of Intelligent and Fuzzy Systems, 45(2), 3233–3245. https://doi.org/10.3233/jifs-231063

Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E., Samad, S., Mahmoud, M., Alarood, A. A., Zainol, A., Majeed, H. D., & Shuib, L. (2020). Assessment of sustainability indicators for green building manufacturing using fuzzy multi-criteria decision making approach. Journal of Cleaner Production, 277, Article 122905. https://doi.org/10.1016/j.jclepro.2020.122905

Yazdani, M., Wen, Z., Liao, H., Banaitis, A., & Turskis, Z. (2019). A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. Journal of Civil Engineering and Management, 25(8), 858–874. https://doi.org/10.3846/jcem.2019.11309

Yazdani, M., Zaraté, P., Zavadskas, E. K., & Turskis, Z. (2018). A combined compromise solution (COCOSO) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/md-05-2017-0458

Zarghami, E., Azemati, H., Fatourehchi, D., & Karamloo, M. (2018). Customizing well-known sustainability assessment tools for Iranian residential buildings using Fuzzy Analytic Hierarchy Process. Building and Environment, 128, 107–128. https://doi.org/10.1016/j.buildenv.2017.11.032

Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Zavadskas, E. K., Antuchevičienė, J., Hosseini, M. R., & Martek, I. (2021). Sustainable construction engineering and management. Sustainability, 13(23), Article 13028. https://doi.org/10.3390/su132313028

Zavadskas, E. K., Antuchevičienė, J., Vilutienė, T., & Adeli, H. (2017). Sustainable decision-making in civil engineering, construction and building technology. Sustainability, 10(2), Article 14. https://doi.org/10.3390/su10010014

Zavadskas, E. K., Kaklauskas, A., & Sarka, V. (1994). The new method of multi-criteria complex proportional assessment of projects. Technological and Economic Development of Economy, 3, 131–139.

Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037

Zhang, J., Qi, X., & Liang, C. (2018). Tackling complexity in green contractor selection for mega infrastructure projects: A hesitant fuzzy linguistic MADM approach with considering group attitudinal character and attributes’ interdependency. Complexity, 2018, 1–31. https://doi.org/10.1155/2018/4903572

Zhou, J., Xiahou, T., & Liu, Y. (2021). Multi-objective optimization-based TOPSIS method for sustainable product design under epistemic uncertainty. Applied Soft Computing, 98, Article 106850. https://doi.org/10.1016/j.asoc.2020.106850

Zhu, L. (2020). Research and application of AHP-fuzzy comprehensive evaluation model. Evolutionary Intelligence, 15(4), 2403–2409. https://doi.org/10.1007/s12065-020-00415-7

Zhu, R., Hu, X., Li, V., & Liu, C. (2021a). Investigating economic roles of multinational construction industries: A super-efficiency DEA approach. Applied Economics, 53(41), 4810–4822. https://doi.org/10.1080/00036846.2021.1910133

Zhu, X., Meng, X., & Zhang, M. (2021b). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260

Zuo, W., Li, D., Yu, G., & Zhang, L. (2019). A large group decision-making method and its application to the evaluation of property perceived service quality. Journal of Intelligent & Fuzzy Systems, 37(1), 1513–1527. https://doi.org/10.3233/JIFS-182934

Zvirgzdiņš, J., Plotka, K., & Geipele, S. (2018). Eco-economics in cities and rural areas. Baltic Journal of Real Estate Economics and Construction Management, 6(1), 88–99. https://doi.org/10.2478/bjreecm-2018-0007

Zvirgzdiņš, J., Plotka, K., & Geipele, S. (2019). Circular economy in built environment and real estate industry. Modern Building Materials, Structures and Techniques. https://doi.org/10.3846/mbmst.2019.046