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Abstract. A multi-step derivative-free iterative technique is devel-

oped by extending the well-known Traub-Steffensen iteration for

solving the systems of nonlinear equations. Keeping in mind the

computational aspects, the general idea to construct the scheme is

to utilize the single inverse operator per iteration. In fact, these

type of techniques are hardly found in literature. Under the stan-

dard assumption, the proposed technique is found to possess the

fifth order of convergence. In order to demonstrate the compu-

tational complexity, the efficiency index is computed and further

compared with the efficiency of existing methods of similar na-

ture. The complexity analysis suggests that the developed method

is computationally more efficient than their existing counterparts.

Furthermore, the performance of method is examined numerically

through locating the solutions to a variety of systems of nonlinear

equations. Numerical results regarding accuracy, convergence be-

havior and elapsed CPU time confirm the efficient behavior of the

proposed technique.
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1 Introduction

Approximating the solutions in numerical form for the nonlinear equations is
the most investigated topic in the field of numerical analysis. Most of the
mathematical models or equations, which describe the physical or real-world
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phenomena, are inherently nonlinear in nature. In general, the closed or ana-
lytical form of solution of these equations is not feasible to obtain. The itera-
tive methods, on the other hand, provide the solution in numerical form with
the desired precision. For solving the uni-variate equation, g(t) = 0, where
g : D ⊆ R → R is a nonlinear function, the quadratically convergent Newton
method [17] is the most basic approach, which is described as follows:

t(k+1) = t(k) − g(t(k))

g′(t(k))
, k = 0, 1, 2, . . . ,

where t(0) is the initial approximation in sufficient proximity of the solution
t∗. In the cases where the evaluation of derivative is not feasible, the Traub-
Steffensen technique [3, 17] is applicable wherein the derivative g′(t) at any

t ∈ D is to be approximated by the divided difference [u, t; g] = g(u)−g(t)
u−t ,

where u = t + βg(t), β ∈ R\{0}. Therefore, the Traub-Steffensen scheme is
represented as

t(k+1) = t(k) − g(t(k))

[u(k), t(k); g]
. (1.1)

In particular for β = 1, the scheme (1.1) reduces to Steffensen method [1, 17].
In order to generalize the iterative schemes to multidimensional case G :

D ⊆ Rm → Rm, where G(t) = (g1(t), . . . , gm(t))T , t = (t1, . . . , tm)T and
gi : D → R are nonlinear functions, the generalized Newton scheme [16, 19] is
represented as,

t(k+1) = t(k) −G′(t(k))−1G(t(k)), (1.2)

where G′ : D → L(Rm) is a linear operator on Rm, particularly known as the
Jacobian matrix [12,16]. Furthermore, the generalized Traub-Steffensen [10,11]
scheme is represented as

t(k+1) = t(k) − [u(k), t(k);G]−1G(t(k)), (1.3)

where u(k) = t(k)+βG(t(k)). Here, [·, ·;G] : D×D → L(Rm) is the generalized
divided difference operator [1,12] defined as [u, v;G](u−v) = G(u)−G(v), where
u, v ∈ Rm. However, for the computational purposes, the divided difference
operator [t, y;G] can be considered as the approximation of Jacobian matrix
G′(t), by defining the divided difference matrix (see [10, 17]) with elements as
given below,

[t, y ;G]ij =
gi(t1, ..., tj , yj+1, ..., ym)− gi(t1, ..., tj−1, yj , ..., ym)

tj − yj
, 1 ⩽ i, j ⩽ m,

where t = (t1, ..., tm)T and y = (y1, ..., ym)T .
Due to the fact that scheme (1.3) preserves quadratic convergence without

the need of any derivatives, it significantly improves upon Newton’s technique
(1.2). In contrast to the case of higher-order methods with derivative eval-
uations, the construction of derivative-free schemes is a challenging task, in
particular for solving nonlinear systems. As already pointed out that the Ja-
cobian matrix is approximated by the divided difference matrix, it might be
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possible that the derivative-free schemes are not as precise as the schemes re-
quiring derivative evaluation. Thus, it is imperative to design a Jacobian-free
scheme in such a manner that it turns out to be efficient and must hold superior
convergence properties.

Higher-order methods are very important in many scientific applications
which need high precision in their computations [9, 13]. For example, He and
Ding [6] demonstrated the use of arbitrary precision computations to improve
the results obtained in climate simulations, whereas Zhang and Huang [20] used
high-precision calculations to solve interpolation problems in astronomy. The
precision required necessitates a large number of iterations if one uses a low-
order method. Results of the numerical experiments in [6] and [20] show that
the high-order methods associated with multiprecision floating point arithmetic
are very useful, as they yield a clear reduction in iterations.

We present some of the higher-order derivative-free methods that are avail-
able in the literature. For convenience, let us denote these methods as Mp,i,
where p is the convergence order, and i is the counting index for the method
having p-th order of convergence. Extending the Traub-Steffensen method to a
two-step method involving the additional inverse operators, Wang-Zhang [18]
developed the following fourth-order method:

y(k) = t(k) − [u(k), t(k);G]−1G(t(k)),

t(k+1) = M4,1(t
(k), y(k)) = y(k) − [y(k), t(k);G]−1

(
[y(k), t(k);G]− [y(k), u(k);G]

+ [u(k), t(k);G]
)
[y(k), t(k);G]−1G(y(k)),

where u(k) = t(k) + βG(t(k)) and β ∈ R\{0}. In terms of computational cost,
the method M4,1 requires three evaluations each of function G and divided
difference operator [·, ·;G], and two of inverse operator [·, ·;G]−1.

In the quest to generate higher-order methods, Grau et al. [5] developed
the two-step fourth-order and three-step sixth-order schemes as given below,

y(k) = t(k) − [u(k), v(k);G]−1G(t(k)),

z(k) = M4,2(t
(k), y(k)) = y(k) −

(
2[y(k), t(k);G]− [u(k), v(k);G]

)−1
G(y(k)),

t(k+1)=M6,1(t
(k), y(k), z(k))=z(k)−

(
2[y(k), t(k);G]−[u(k), v(k);G]

)−1
G(z(k)),

(1.4)

where u(k) = t(k)+G(t(k)) and v(k) = t(k)−G(t(k)). Note that, the schemes M4,2

and M6,1 have been developed in [5] by generalizing the fourth-order and sixth-
order schemes, respectively, that are presented earlier by Grau and Dı́az [4] for
uni-variate case. It is clear that the scheme (1.4) utilizes evaluations of five
functions and two evaluations each of divided difference and inverse operator.

In similar fashion, Sharma and Arora [14] constructed the fourth-order as
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well as sixth-order schemes as

y(k) = t(k) − [u(k), v(k);G]−1G(t(k)),

z(k) = M4,3(t
(k), y(k)) = y(k) −

(
3I − 2[u(k), v(k);G]−1[y(k), t(k);G]

)
× [u(k), v(k);G]−1G(y(k)),

t(k+1) = M6,2(t
(k), y(k), z(k)) = z(k) −

(
3I − 2[u(k), v(k);G]−1[y(k), t(k);G]

)
× [u(k), v(k);G]−1G(z(k)), (1.5)

where u(k) = t(k)+βG(t(k)) and v(k) = t(k)−βG(t(k)). Notice that the methods
M4,3 and M6,2 only use single inverse operator as compared to the two inverse
operators in the methods M4,2 and M6,1.

Singh [15] proposed a fifth-order method which is given as,

y(k) = t(k) − [u(k), t(k);G]−1G(t(k)),

z(k) = y(k) − [w(k), y(k);G]−1G(y(k)),

t(k+1) = z(k) − (2[w(k), y(k);G]−1 − [u(k), t(k);G]−1)G(z(k)), (1.6)

where u(k) = t(k) + G(t(k)) and w(k) = y(k) + G(y(k)). This iterative scheme
utilizes five functions and two each of divided difference and inverse operator.
Note that both, the sixth (1.4) and the fifth (1.6) order methods, use same
number of operators, i.e., two divided differences and two inversions. The
sixth order method (1.4), however, is computationally more efficient due to its
higher order. On the other hand, the method (1.5) although uses only one
inverse operator, it is still not as efficient due to using two divided differences.

Construction of multi-step higher-order methods using additional evalua-
tions of functions or inverse operators significantly increases the computational
cost of iterative procedure. Indeed, the methods involving single inverse opera-
tors can be considered the best choice among Newton-type or Traub-Steffensen-
type methods. The reason being that the numerical operational cost per iter-
ation would be minimal in solving the system of equations using LU matrix
decomposition process. Additionally, it is more challenging to generate the
higher-order derivative-free methods that efficiently solve the systems of non-
linear equations. In this regard, the primary purpose of this paper is to design
a multi-step derivative-free method that utilizes single inverse operator per it-
eration. Indeed, it would lead to the development of a computationally efficient
technique. Let us note that the iterative procedures can be analyzed for their
computational efficiency through computing the efficiency index [5], which is
based on some parameters that are specifically introduced to determine the
computational cost per iteration.

Keeping in mind the above discussion, here we propose a derivative-free
method with fifth-order of convergence for solving nonlinear equations. Novelty
of the proposed method is that it requires only a single evaluation of divided
difference and inverse operator. The derivative-free iterative schemes with such
characteristics are hardly found in the literature.

We summarize the rest of the paper. The derivative-free iterative scheme
is presented as well as analyzed in the Section 2. Computational efficiency of
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the developed method is established and further compared with the existing
methods in Section 3. Furthermore, in Section 4, the numerical performance
is analyzed by solving the various systems of nonlinear equations. Finally, the
concluding remarks are presented in Section 5.

2 Development of method

The prime focus here is to develop a multi-step generalized Traub-Steffensen-
type method for solving systems of nonlinear equations. To achieve this, we
initially develop a multi-step derivative-free scheme for solving only uni-variate
functions. This development will be further generalized for the case of multi-
dimensional systems in view of the methodology discussed in previous section.
In particular for solving the scalar equation g(t) = 0, consider the scheme:

w(k) = t(k) − g(t(k))

[u(k), v(k); g]
, y(k) = w(k) − g(w(k))

[u(k), v(k); g]
,

z(k) = w(k) +
g(w(k))

[u(k), v(k); g]
,

t(k+1) = w(k) − 1

[u(k), v(k); g]

(
a1g(w

(k)) + a2g(y
(k)) + a3g(z

(k))
)
, (2.1)

where u(k) = t(k)+βg(t(k)), v(k) = t(k)−βg(t(k)), β = R\{0} and a1, a2, a3 are
some parameters to be determined. Now, the convergence of presented method
is analyzed in the following theorem:

Theorem 1. Let g : D ⊂ R → R be a sufficiently differentiable function with
respect to its zero t∗ in neighborhood D. The series of iterates produced by
method (2.1) for t(0) ∈ D converges to t∗ with order of convergence five if the
initial approximation, t(0), is close enough to t∗, provided a1 = −3, a2 = 3 and
a3 = 2.

Proof. Let σ(k) = t(k) − t∗, σ
(k)
u = u(k) − t∗, σ

(k)
v = v(k) − t∗, σ

(k)
w = w(k) − t∗,

σ
(k)
y = y(k)−t∗ and σ

(k)
z = z(k)−t∗ be the errors in the k-th iteration of method

(2.1). Then, on account of the fact that g(t∗) = 0 and g′(t∗) ̸= 0, the Taylor
series expansions of g(t(k)), g(u(k)), g(v(k)), g(w(k)), g(y(k)) and g(z(k)) about
t∗ gives, respectively

g(t(k)) = g′(t∗)
[
σ(k) +A2σ

(k)2 +A3σ
(k)3 +A4σ

(k)4 +A5σ
(k)5 + . . .

]
, (2.2)

g(u(k)) = g′(t∗)
[
σ(k)
u +A2σ

(k)2

u +A3σ
(k)3

u +A4σ
(k)4

u +A5σ
(k)5

u + . . .
]
, (2.3)

g(v(k)) = g′(t∗)
[
σ(k)
v +A2σ

(k)2

v +A3σ
(k)3

v +A4σ
(k)4

v +A5σ
(k)5

v + . . .
]
, (2.4)

g(w(k)) = g′(t∗)
[
σ(k)
w +A2σ

(k)2

w +A3σ
(k)3

w +A4σ
(k)4

w +A5σ
(k)5

w + . . .
]
, (2.5)

g(y(k)) = g′(t∗)
[
σ(k)
y +A2σ

(k)2

y +A3σ
(k)3

y +A4σ
(k)4

y +A5σ
(k)5

y + . . .
]
, (2.6)

g(z(k)) = g′(t∗)
[
σ(k)
z +A2σ

(k)2

z +A3σ
(k)3

z +A4σ
(k)4

z +A5σ
(k)5

z + . . .
]
, (2.7)

where Ai = (1/i!)g(i)(t∗)/g′(t∗), i = 2, 3, 4, . . . .
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Now, by using Equations (2.2)–(2.7) in the last step of (2.1), we obtain the
error equation as

σ(k+1) = σ(k)
w − a1σ

(k)
w − a2σ

(k)
y − a3σ

(k)
z − (a1σ

(k)2

w + a2σ
(k)2

y + a3σ
(k)2

z )A2

+ 2σ(k)A2 × (a1σ
(k)
w + a2σ

(k)
y + a3σ

(k)
z + (a1σ

(k)2

w + a2σ
(k)2

y + a3σ
(k)2

z )A2)

− σ(k)2(a1σ
(k)
w + a2σ

(k)
y + a3σ

(k)
z + (a1σ

(k)2

w + a2σ
(k)2

y + a3σ
(k)2

z )A2)(−A3

× (3+(βg′(t∗))2)+4A2
2)−2σ(k)3(a1σ

(k)
w +a2σ

(k)
y +a3σ

(k)
z +(a1σ

(k)2

w +a2σ
(k)2

y

+ a3σ
(k)2

z )A2)(−4A3
2 − 2A4(1 + (βg′(t∗))2) +A2A3(6 + (βg′(t∗))2)) + . . . .

(2.8)

Substitution of (2.2)–(2.4) in the first step of (2.1) yields

σ(k)
w = A2σ

(k)2 +
(
− 2A2

2 +A3(2 + (βg′(t∗))2)
)
σ(k)3 +

(
4A3

2 −A2A3(7

+ (βg′(t∗))2) +A4(3 + 4(βg′(t∗))2)
)
σ(k)4 +

(
− 8A4

2 − 2A2A4(5

+ 2(βg′(t∗))2) +A2
2A3(20 + 3(βg′(t∗))2)−A2

3(6 + 3(βg′(t∗))2

+ (βg′(t∗))4) +A5(4 + 10(βg′(t∗))2 + (βg′(t∗))4)
)
σ(k)5 +O(σ(k)6).

(2.9)

Then, using (2.2)–(2.5) and (2.9) in the second and third steps of (2.1), it is
obtained that

σ(k)
y = 2A2

2σ
(k)3 +

(
− 4A3

2 + 2A2A3(βg
′(t∗))2 +A4(3 + 4(βg′(t∗))2)

)
σ(k)4

+
(
8A4

2 − 6A2A4 + 2A2
3(βg

′(t∗))2 −A2
2A3(6 + 5(βg′(t∗))2) +A5(4

+ 10(βg′(t∗))2 + (βg′(t∗))4)
)
σ(k)5 +O(σ(k)6), (2.10)

σ(k)
z = 2A2σ

(k)2 +
(
− 6A2

2 + 2A3(2 + (βg′(t∗))2)
)
σ(k)3 +

(
12A3

2 − 2A2A3(7

+ 2(βg′(t∗))2) +A4(3 + 4(βg′(t∗))2)
)
σ(k)4 +

(
− 24A4

2 − 2A2A4(7

+ 4(βg′(t∗))2) +A2
2A3(46 + 11(βg′(t∗))2)− 2A2

3(6 + 4(βg′(t∗))2

+ (βg′(t∗))4) +A5(4 + 10(βg′(t∗))2 + (βg′(t∗))4)
)
σ(k)5 +O(σ(k)6).

(2.11)

Finally, using (2.9)–(2.11) in (2.8) and upon simplification, we obtain

σ(k+1) = −(a1+2a3−1)A2σ
(k)2+

(
2(2a1−a2 + 5a3 − 1)A2

2 − (a1 + 2a3 − 1)

×A3(2 + (βg′(t∗))2)
)
σ(k)3 +

(
(4− 13a1 + 13a2 − 41a3)A

3
2 − (a1 + 2a3 − 1)

×A4(3 + 4(βg′(t∗))2) +A2A3(35a3 − 7a2 − 7− (βg′(t∗))2 − 3a2(βg
′(t∗))2

+ 11a3(βg
′(t∗))2 + 2a1(7 + 2(βg′(t∗))2))

)
σ(k)4 +

(
2(19a1 − 28a2 + 76a3

− 4)A4
2−(a1+2a3−1)A5(4+10(βg′(t∗))2+(βg′(t∗))4) + 2A2A4(25a3 − 5

− 2(βg′(t∗))2 + 22a3(βg
′(t∗))2 + 2a1(5 + 4(βg′(t∗))2)− a2(5 + 6(βg′(t∗))2))
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+A2
2A3(20− 200a3 + 3(βg′(t∗))2 − 54a3(βg

′(t∗))2 + 4a2(16 + 5(βg′(t∗))2)

− a1(64 + 15(βg′(t∗))2)) +A2
3(−6 + 30a3 − 3(βg′(t∗))2 + 21a3(βg

′(t∗))2

− (βg′(t∗))4 + 5a3(βg
′(t∗))4 + 2a1(6 + 4(βg′(t∗))2 + (βg′(t∗))4)

− a2(6 + 5(βg′(t∗))2 + (βg′(t∗))4)
)
σ(k)5 +O(σ(k)6). (2.12)

It would be enough to equate the coefficients of σ(k)2 , σ(k)3 and σ(k)4 to zero
in order to find the parameters a1, a2 and a3. As a result, we have

a1+2a3−1 = 0, 2a1−a2+5a3−1 = 0, −13a1 + 13a2 − 41a3 + 4 = 0. (2.13)

Solving the Equations (2.13), we get a1 = −3, a2 = 3 and a3 = 2. Substituting
these values in (2.11), the error equation (2.12) becomes,

σ(k+1) =
(
14A4

2 + 4A2
2A3

)
σ(k)5 +O(σ(k)6). (2.14)

The proof is completed and error equation (2.14) demonstrates that the local
order of convergence is five for the method (2.1). ⊓⊔

2.1 Generalized method

When an iterative method achieves high computing speed at low computational
cost, it is considered computationally efficient in numerical analysis. As covered
in the introduction, the evaluation of functions, divided difference operators,
and inverse operators are the primary computationally expensive components
of derivative-free methods. The evaluation of an inverse operator stands out
as a significant barrier in the development of an effective iterative scheme due
to its high computing cost. It is therefore important to use as few of these
inversions as possible while developing a numerical method.

Let us take the problem of solving G(t) = 0 by an iterative method that
is based on the construction of scheme (2.1). Now, write the corresponding
formula a1 = −3, a2 = 3 and a3 = 2 for the system of equations as

w(k) = t(k) − [u(k), v(k);G]−1G(t(k)),

y(k) = w(k) − [u(k), v(k);G]−1G(w(k)),

z(k) = w(k) + [u(k), v(k);G]−1G(w(k)),

t(k+1) = w(k) − [u(k), v(k);G]−1(−3G(w(k)) + 3G(y(k)) + 2G(z(k))), (2.15)

where u(k) = t(k) + βG(t(k)), v(k) = t(k) − βG(t(k)), and [u(k), v(k);G] is the
divided difference operator that is already defined in previous section. The
iterative scheme (2.15) defines a four-step family of derivative-free methods. It
is easy to see that this scheme utilizes six functions and single evaluation each
of divided difference operator and inverse operator per iteration.

In order to examine convergence properties of the scheme (2.15), the fol-
lowing approximation of divided difference operators is considered (see [5, 7]):

[t+ h, t;G] =

∫ 1

0

G′(t+ xh)dx, ∀ t, h ∈ Rm.
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Expanding G′(t+ xh) using Taylor series at the point t and then integrating,

[t+ h, t;G] =

∫ 1

0

G′(t+ xh) dx = G′(t) +
1

2
G′′(t)h+

1

6
G′′′(t)h2 + . . . , (2.16)

where hi = (h,
i−times· · · , h) ∈ Rm× i−times· · · ×Rm. Let us note that, for each k ∈ N

and t ∈ Rm, G(k)(t) : Rm× k−times· · · ×Rm → Rm is a k-linear function [12] such
that G(k)(t)hk ∈ Rm and G(k)(t)hk−1 ∈ L(Rm). In view of this, the operations
on the right hand side of Equation (2.16) are well-defined.
Let σ(k) = t(k)−t∗ be the error in the k-th iteration of method (2.15). Assuming
that Γ = G′(t∗)−1 exists, then developing G(t(k)) and its derivatives in a
neighborhood of t∗, we have

G(t(k)) = G′(t∗)
(
σ(k) +A2σ

(k)2 +A3σ
(k)3 +A4σ

(k)4 +O(σ(k)5)
)
, (2.17)

G′(t(k)) = G′(t∗)
(
I + 2A2σ

(k) + 3A3σ
(k)2 + 4A4σ

(k)3 +O(σ(k)4)
)
, (2.18)

G′′(t(k)) = G′(t∗)
(
2A2 + 6A3σ

(k) + 12A4σ
(k)2 +O(σ(k)3)

)
, (2.19)

G′′′(t(k)) = G′(t∗)
(
6A3 + 24A4σ

(k) +O(σ(k)2)
)
, (2.20)

where I is an identity operator, Ai = 1
i!ΓG(i)(t∗), i = 2, 3, . . . and σ(k)i =

(σ(k),
i−times· · · , σ(k)), σ(k) ∈ Rm.

With the help of above expressions, we can now analyze the convergence
behavior of scheme (2.15) through the following theorem:

Theorem 2. Let G : D ⊂ Rm → Rm be a sufficiently differentiable function
with its zero t∗ in neighborhood D. When the initial approximation t(0) is close
enough to t∗, the method (2.15) for t(0) ∈ D produces a sequence of iterates
that converges to t∗ with order of convergence five.

Proof. Let σ(k) = t(k) − t∗, σ
(k)
u = u(k) − t∗, σ

(k)
v = v(k) − t∗, σ

(k)
w = w(k) − t∗,

σ
(k)
y = y(k)−t∗ and σ

(k)
z = z(k)−t∗ be the errors in the k-th iteration of method

(2.15). Using the expression of (2.17), it is obtained that

σ(k)
u =σ(k)+B

(
σ(k)+A2σ

(k)2+A3σ
(k)3+A4σ

(k)4+A5σ
(k)5+O(σ(k)6)

)
, (2.21)

σ(k)
v =σ(k)−B

(
σ(k)+A2σ

(k)2+A3σ
(k)3+A4σ

(k)4+A5σ
(k)5+O(σ(k)6)

)
, (2.22)

where B = βG′(t∗). Expanding G(u(k)) and G(v(k)) as Taylor series using
Equations (2.21) and (2.22),

G(u(k)) = G′(t∗)
[
(I+B)σ(k)+A2(I+3B+B2)σ(k)2+(A3(I+4B+3B2+B3)

+ 2B(I+B)A2
2)σ

(k)3+(A4(I+5B+6B2+4B3+B4)+2B(I+B)A2A3
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+ 3B(I +B)2A3A2 +B2A3
2)σ

(k)4 + (A5(I + 6B + 10B2 + 10B3 + 5B4

+B5)+2B(I+B)A2A4+3B(I +B)2A2
3 + 4B(I +B)3A4A2 +B2A2

2A3

+B2A2A3A2 + 3B2(I +B)A3A
2
2)σ

(k)5 +O(σ(k)6)
]
, (2.23)

G(v(k)) = G′(t∗)
[
(I−B)σ(k)+A2(I−3B+B2)σ(k)2+(A3(I−4B+3B2−B3)

+ 2B(B−I)A2
2)σ

(k)3+(A4(I−5B+6B2 − 4B3 +B4) + 2B(B − I)A2A3

− 3B(B − I)2A3A2 +B2A3
2)σ

(k)4 + (A5(I − 6B + 10B2 + 10B3 + 5B4

−B5)+2B(B−I)A2A4−3B(B−I)2A2
3 + 4B(B − I)3A4A2 +B2A2

2A3

+B2A2A3A2 − 3B2(B − I)A3A
2
2)σ

(k)5 +O(σ(k)6)
]
. (2.24)

With the help of Equations (2.23) and (2.24), we obtain that

[u(k), v(k);G]

= G′(t∗)
[
I + 2A2σ

(k) +A3(3 +B2)σ(k)2 + (4A4 + 4A4B
2 + 3A2A3

+ 3A2(−A3 +A2
2) + 4A3A2 + 3B2A3A2 − (4A3 +A3B

2 + 2A2
2)A2

−A23)σ(k)3 + (5A5 + 10A5B
2 +A5B

4 + 3A2A4 + 3A2(−A4 +A2A3

+A3A2 −A3
2) + 4A2

3 + 3B2A2
3 + 5A4A2 + 12B2A4A2 + (4A3 +A3B

2

+ 2A2
2)(−A3 +A2

2)− (A4(5I + 4B2) + 2A2A3 + 3(I +B2)A3A2)A2

−A2
2A3 −A2A3A2 −A3A

2
2 + 3B2A3A

2
2 +A4

2)σ
(k)4 +O(σ(k)5)

]
, (2.25)

which ultimately leads to the following,

[u(k), v(k);G]−1

=
[
I − 2A2σ

(k) − ((3I +B2)A3 − 4A2
2)σ

(k)2 − (4(A4 +A4B
2 + 2A3

2)

− (7I + 3B2)A2A3 + (B2 − 5)A3A2)σ
(k)3 + (5A5 + 10A5B

2

+A5B
4 − 2(5I + 6B2)A2A4 − (9I + 4B2 +B4)A2

3 − 6A4A2

+ 4B2A4A2 + 15A2
2A3 + 7B2A2

2A3 + 11A2A3A2 − 3B2A2A3A2

+ 10A3A
2
2 +B2A3A

2
2 − 16A4

2)σ
(k)4 +O(σ(k)5)

]
Γ, (2.26)

where Γ = G′(t∗)−1. The first step of (2.15), using (2.17) and (2.26), yields

σ(k)
w =A2σ

(k)2+(A3(2I +B2)−2A2
2)σ

(k)3+(3A4 + 4A4B
2−(5I+3B2)A2A3

+ 2(B2−I)A3A2 + 4A3
2)σ

(k)4+(A5(4I+10B2+B4)−4(2I + 3B2)A2A4

− (6I + 3B2 +B4)A2
3 + (−2I + 8B2)A4A2 + (11I + 7B2)A2

2A3 + (4I

− 6B2)A2A3A2 + (5I + 2B2)A3A
2
2 − 8A4

2)σ
(k)5 +O(σ(k)6). (2.27)
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Now, developing the series expansion of G(w(k)) as

G(w(k)) = G′(t∗)
[
A2σ

(k)2+(A3(2I+B2)−2A2
2)σ

(k)3+(3A4+4A4B
2−(5I

+ 3B2)A2A3 + 2(B2 − I)A3A2 + 5A3
2)σ

(k)4 + (A5(4I + 10B2 +B4)

− 4(2I + 3B2)A2A4 − (6I + 3B2 +B4)A2
3 + (−2I + 8B2)A4A2 + (13I

+ 8B2)A2
2A3 + (6I − 5B2)A2A3A2 + (5I + 2B2)A3A

2
2 − 12A4

2)σ
(k)5

+O(σ(k)6)
]
. (2.28)

Then, using (2.26)–(2.28) in second and third steps of (2.15), we have

σ(k)
y =2A2

2σ
(k)3+

(
2A2(A3(2I+B2)−2A2

2)+(3A3+A3B
2−4A2

2)A2−A3
2

)
σ(k)4

+
(
2A2(3A4 + 4A4B

2 − (5I + 3B2)A2A3 + 2(B2 − I)A3A2 + 5A3
2) + (3A3

+A3B
2 − 4A2

2)(2A3 +A3B
2 − 2A2

2) + ((B2 − 5I)A3A2 − (7 + 3B2)A2A3

+ 4(A4+A4B
2+2A3

2))A2−(2I+B2)A2
2A3−(2I+B2)A2A3A2+4A4

2

)
σ(k)5

+O(σ(k)6), (2.29)

σ(k)
z = 2A2σ

(k)2+2
(
A3(2I+B2)−3A2

2

)
σ(k)3+

(
6A4+8A4B

2−2(5I+3B2)A2A3

− 2A2(2A3+A3B
2−2A2

2)−4A3A2+4B2A3A2−(3A3+A3B
2−4A2

2)A2

+ 9A3
2

)
σ(k)4+

(
2A5(4I+10B2+B4)−8(2I+3B2)A2A4−2A2((3+4B2)A4

− (5I + 3B2)A2A3 + 2(B2 − I)A3A2 + 5A3
2)− 12A2

3 − 6B2A2
3 − 2B4A2

3

+ 4(4B2 − I)A4A2 − (3A3 +A3B
2 − 4A2

2)(2A3 +A3B
2 − 2A2

2)− ((B2

− 5I)A3A2 − (7 + 3B2)A2A3 + 4(A4+A4B
2+2A3

2))A2+3(8I+5B2)A2
2A3

+ (10I − 11B2)A2A3A2 + 2(5I + 2B2)A3A
2
2 − 20A4

2

)
σ(k)5 +O(σ(k)6).

(2.30)

Now, the Taylor expansions of G(y(k)) and G(z(k)) are given as

G(y(k)) = G′(t∗)
[
2A2

2σ
(k)3+(2(2I+B2)A2A3+(3I+B2)A3A2−9A3

2)σ
(k)4

+ ((6I + 8B2)A2A4+(6I+5B2+B4)A2
3+4(I+B2)A4A2−(20I+11B2)

×A2
2A3 − 13A2A3A2 − (11I +B2)A3A

2
2 + 30A4

2)σ
(k)5 +O(σ(k)6)

]
, (2.31)

G(z(k)) = G′(t∗)
[
2A2σ

(k)2+2(A3(2I+B2)−3A2
2)σ

(k)3+(21A3
2−2(7I+4B2)A2A3

+ (6 + 8B2)A4 + (3d2k2 − 7I)A3A2)σ
(k)4 + (2A5(4I + 10B2 +B4)− 70A4

2

− 2(11I + 16B2)A2A4 − (18I + 11B2 + 3B4)A2
3 + 4(3B2 − 2I)A4A2 + (50I

+ 29B2)A2
2A3+(29I−8B2)A2A3A2+(21I+5B2)A3A

2
2)σ

(k)5+O(σ(k)6)
]
.
(2.32)

Finally, by the use of Equations (2.23)–(2.32) in the last step of (2.15), we
present the error equation as

σ(k+1) = 2
(
(3I +B2)A3A

2
2 − (I +B2)A2A3A2 + 7A4

2

)
σ(k)5 +O(σ(k)6).

This completes the proof. ⊓⊔
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For the further reference in this study, let us denote the new method (2.15)
by M5,1.

3 Computational efficiency

An iterative method’s computing efficiency is expressed as the efficiency index
E = p1/C (see [5]), where p denotes the order of convergence and C represents
the computational cost that is determined by

C(µ,m, η) = A(m)µ+ P (m, η).

Here, P (m, η) indicates the number of products required each iteration, and
A(m) indicates the number of evaluations of scalar functions utilized in the
evaluation of G and [t, y;G]. A ratio µ > 0 between products and evaluations
of scalar functions and a ratio η ≥ 1 between quotients and products are needed
in order to represent the value of C(µ,m, η) in terms of products.

In addition, the efficiency index can also be re-formulated as (see [16]),

E =
1

ρ

log p

C
, (3.1)

where ρ is a parameter that can be fixed as per convenience. The efficiency
index defined by Equation (3.1) is specifically used in this section to assess the
computational efficiency of method.

The following are the many assessments and procedures that go into the
overall cost of computing. We evaluate m scalar functions (g1, g2, . . . , gm) when
computing G in any iterative function. Similarly, m scalar functions in both
G(t) and G(y) are evaluated independently when computing a divided differ-
ence [t, y;G]. In addition, m2 quotients from any divided difference must be
added. A linear system involving m(m−1)(2m−1)/6 products and m(m−1)/2
quotients in the LU decomposition and m(m − 1) products and m quotients
in the resolution of two triangular linear systems must be solved in order to
construct an inverse linear operator. When multiplying a matrix by a scalar or
by a vector, we need to add m2 products, and when multiplying a vector by a
scalar, we need to add m products.

In order to demonstrate the computational efficiency of new fifth-order
method M5,1, consider the existing fourth-order, fifth-order and sixth-order
methods that are already described in Section 1. The fourth-order methods are
denoted as M4,1, M4,2 and M4,3, whereas the sixth-order methods are denoted
as M6,1 and M6,2. Further, denote the existing fifth-order method by M5,2 that
is expressed in Equation (1.6). Denoting the efficiency index of method Mp,i

by Ep,i and computational cost by Cp,i, then taking into account the above



Development and analysis of an efficient Jacobian-free method 265

considerations, we have

C4,1 =
m

3

(
− 8 + 2m2 + 6η(1 + 2m) + 9m(1 + µ)

)
and E4,1 =

1

ρ

log 4

C4,1
.

C4,2 =
m

3

(
− 5+2m2+3η(1+3m)+6µ+6m(1 + µ)

)
and E4,2 =

1

ρ

log 4

C4,2
.

C4,3 =
m

6

(
− 5+2m2+15η(1+m)+12µ+3m(7 + 4µ)

)
and E4,3 =

1

ρ

log 4

C4,3
.

C5,1 =
m

6

(
1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ)

)
and E5,1 =

1

ρ

log 5

C5,1
.

C5,2 =
m

6

(
− 16+4m2+18η(1+m)+18µ+6m(3 + 2µ)

)
and E5,2 =

1

ρ

log 5

C5,2
.

C6,1 =
m

3

(
− 8+2m2+3η(2+3m)+9µ+ 3m(3 + 2µ)

)
and E6,1 =

1

ρ

log 6

C6,1
.

C6,2 =
m

6

(
− 5+2m2+3η(9+5m)+18µ+3m(13+4µ)

)
and E6,2 =

1

ρ

log 6

C6,2
.

Consider the ratio

Rp,i;q,j =
Ep,i

Eq,j
=

Cq,j log(p)

Cp,i log(q)
,

to compare the efficiency of the iterative processes under consideration, such
as Mp,i against Mq,j .

It is evident that the iterative technique Mp,i will be more efficient than
Mq,j for Rp,i;q,j > 1. Let us symbolize it mathematically as Mp,i⋗Mq,j . Thus,
resolving the inequality Rp,i;q,j > 1 will provide the range of parameters, for
which Mp,i ⋗Mq,j holds. These results can further be projected geometrically
for some special cases of m. In particular, by fixing the value of η, the consid-
ered ratio Rp,i;q,j can be plotted against the parameter µ for different cases of
m. Let us fix the value η = 3 in each case.

As discussed above, the efficiency comparison is presented below by consid-
ering the analytical as well as geometrical approaches.

M5,1 versus M4,1 case: In this case, the considered ratio is

R5,1;4,1 =
2 log(5)(−8 + 2m2 + 6η(1 + 2m) + 9m(1 + µ))

log(4)(1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ))
.

It can be deduced that, for each µ > 0 and η ≥ 1, the inequality R5,1;4,1 > 1
holds for each m ≥ 3, which implies that M5,1 is more efficient than M4,1, i.e.
M5,1 ⋗ M4,1, for m ≥ 3. However, for the case of m = 2, it is easy to certify
that M5,1 ⋗M4,1 holds only if

µ <
(
−(13 + 11η) log(2) + 2(3 + 5η) log(5)

)
/
(
2 log(128/125)

)
.

The developed results are projected geometrically in the Figure 1 for the
special cases of m = 2, 10, 100, 500, where 0 ≤ µ ≤ 500 and η = 3. It is evident
that the plotted lines, for each case of m, completely lie above the horizontal
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line R = 1 which in fact depicts that R5,1;4,1 > 1 and hence M5,1 ⋗M4,1 in the
considered cases.

M5,1 versus M4,2 case: The ratio is

R5,1;4,2 =
2 log(5)(−5 + 2m2 + 3η(1 + 3m) + 6µ+ 6m(1 + µ))

log(4)(1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ))
.

For the given parameters µ > 0 and η ≥ 1, the inequality R5,1;4,2 > 1 holds or
each m ≥ 3, which implies that M5,1 ⋗M4,2 for m ≥ 3, whereas for m = 2, the

inequality R5,1;4,2 > 1 leads to the condition, µ < −(13+11η) log(2)+(5+7η) log(5)
2 log(128/125) .

Geometrically, the results are presented in Figure 2 for the special cases of
m = 2, 10, 100, 500, wherein it is clear that the plotted curves remain above the
line R = 1 in the given range, i.e., M5,1 ⋗M4,2 for the considered cases.

M5,1 versus M4,3 case: Now ratio is

R5,1;4,3 =
log(5)(−5 + 2m2 + 15η(1 +m) + 12µ+ 3m(7 + 4µ))

log(4)(1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ))
.

In this case, the inequality R5,1;4,3 > 1 and therefore M5,1 ⋗ M4,3 holds for
each m ≥ 3, whereas for m = 2, M5,1 ⋗M4,3 is true only if following condition

holds: µ < −2(13+11η) log(2)+15(1+η) log(5)
4 log(128/125) . As similar to the previous cases, the

geometrical comparison in this particular case is presented in Figure 3.

M5,1 versus M5,2 case: Here ratio is

R5,1;5,2 =
−16 + 4m2 + 18η(1 +m) + 18µ+ 6m(3 + 2µ)

1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ)
.

It can be deduced by the inequality R5,1;5,2 > 1 that M5,1 ⋗ M5,2 for each
m ≥ 2, which implies that M5,1 is more efficient than M5,2 for m ≥ 2. The
geometrical comparison in this case is displayed in Figure 4.

M5,1 versus M6,1 case: The ratio is

R5,1;6,1 =
2 log(5)(−8 + 2m2 + 3η(2 + 3m) + 9µ+ 3m(3 + 2µ))

log(6)(1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ))
.

The inequality R5,1;6,1 > 1 is true for each m ≥ 3, which implies that M5,1 ⋗
M6,1 for m ≥ 3. However, R5,1;6,1 > 1 holds for m = 2 under the condition,

µ < 4(3+4η) log(5)−(13+11η) log(6)
14 log(6/5) . These results are projected geometrically in

the Figure 5 for the special cases of considered parameters.

M5,1 versus M6,2 case: The ratio is

R5,1;6,2 =
log(5)(−5 + 2m2 + 3η(9 + 5m) + 18µ+ 3m(13 + 4µ))

log(6)(1 + 2m2 + 3η(5 + 3m) + 30µ+ 3m(5 + 2µ))
.

For 3 ≤ m ≤ 120, the inequality R5,1;6,2 > 1 holds true, that means M5,1 ⋗
M6,2 for 3 ≤ m ≤ 120. In particular for m = 2, M5,1 ⋗ M6,2 is true only if
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Figure 1. M5,1 vs. M4,1. Figure 2. M5,1 vs. M4,2.

Figure 3. M5,1 vs. M4,3. Figure 4. M5,1 vs. M5,2.

Figure 5. M5,1 vs. M6,1. Figure 6. M5,1 vs. M6,2.

µ < (27+19η) log(5)−(13+11η) log(6)
14 log(6/5) , whereas for m ≥ 121, M5,1 ⋗ M6,2 holds if

µ > (−2m2−3m(5η+13)−27η+5) log(5)+(2m2+3m(3η+5)+15η+1) log(6)
6m log(25/6)−6 log(7776/125) . The geometrical

comparison of methods in this case is depicted in Figure 6.
The analytical as well as geometrical comparison, in each of the above cases,

determines the range of parameters for which the new developed method pos-
sesses higher efficiency index than the other methods. In general, the efficiency
analysis in this section leads to establish that the method M5,1 is computation-
ally more efficient than the existing methods for the wider range of parameters.

4 Numerical experimentation

In this section, the numerical performance of developed method M5,1 is ana-
lyzed, and further, the corresponding results are compared with the existing
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methods to arrive at some logical conclusions. The numerical experimenta-
tion is executed by considering the systems of nonlinear equations arising in
various practical situations. Additionally, in order to build a relation between
the numerical experimentation and computational efficiency, it is required to
estimate the values of parameters µ and η for each of the considered problem.
To work out this estimation, the evaluation cost of each elementary function
needs to be computed in terms of product units. In this regards, the CPU time
(in milliseconds) elapsed during the execution of elementary operations along
with their estimated cost in product units is displayed in Table 1. All these
computations are executed using the softwareMathematica. It is apparent from
the Table 1 that the evaluation cost of division is approximately 2.81 times the
product unit.

Table 1. CPU time and estimation of computational cost of elementary functions.

Functions ty t/y
√
t et ln(t) sin(t) cos(t) arctan(t)

CPU Time 0.017 0.048 0.023 1.556 1.347 1.694 1.690 2.980

Cost 1 2.81 1.36 90.48 78.31 98.48 98.23 173.24

where t =
√
3− 1 and y =

√
5

To compare the performance of method M5,1 with the existing methods
that are described in previous section, the following comparison parameters
are considered: (i) Computational efficiency (E), (ii) Number of iterations (k)
required for convergence, (iii) Errors between consecutive iterations (∥e(k)∥ =
∥t(k+1)−t(k)∥), (iv) Residual error (∥G(t(k))∥), (v) Approximate computational
order of convergence (ACOC), and (vi) CPU time elapsed during the execution
of algorithm. Let us note that the computational efficiency is computed by
fixing the value ρ = 10−5 in each test. Also, the ACOC is computed using the
formula (see [5, 10]),

ACOC = ln
(
∥s(k+1)∥

/
∥s(k)∥

)/
ln
(
∥s(k)∥

/
∥s(k−1)∥

)
, s(k+1)=t(k+1)−t(k).

The stopping criterion being employed to abort the iterations in each test is as
follows: ∥t(k+1) − t(k)∥ + ∥G(t(k))∥ < 10−100, where k < 100. Notice that the
parameter β, which is appearing in the methods M5,1, M4,1, M4,3 and M6,2,
has been assigned a specific value β = 10−2.

Now, considering the following examples for the comparison analysis, the
numerical results in each case are displayed in Table 2.

Example 1. Starting with the system of two nonlinear equations:

t1 + et2 − cos(t2) = 0, 3t1 − t2 − sin(t1) = 0,

let us take the initial estimate as t(0) = (1, 1)T , in particular, to obtain solution,

t∗ = (0, 0)
T
. In this particular problem, the values of efficiency parameters m,

µ and η are obtained in accordance with the estimates as displayed in Table 1.
These are given as, {m,µ, η} = {2, 144, 2.81}.
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Table 2. Comparison of performance of methods.

Method E k ∥e(1)∥ ∥e(2)∥ ∥e(3)∥ ∥G(t(3))∥ ACOC CPUt

Ex. 1
M5,1 78.13 4 8.28e−02 3.60e−06 1.10e−27 1.48e−27 5.00 0.159
M4,1 77.18 5 7.30e−02 9.07e−06 2.57e−21 3.43e−21 4.00 0.266
M4,2 78.00 5 1.24e−01 1.54e−05 8.95e−21 1.17e−20 4.00 0.219
M4,3 77.66 5 1.14e−01 1.02e−04 1.08e−16 1.45e−16 4.00 0.217
M5,2 77.43 4 6.51e−02 4.20e−07 3.46e−33 4.64e−33 5.00 0.166
M6,1 86.43 4 3.30e−02 3.72e−11 2.38e−64 3.15e−64 6.00 0.156
M6,2 85.47 4 4.52e−02 1.19e−08 5.79e−48 7.76e−48 6.00 0.161

Ex. 2
M5,1 31.21 4 2.36e−02 9.06e−11 7.23e−53 2.72e−52 5.00 1.11
M4,1 17.72 4 2.16e−02 1.61e−08 4.67e−33 1.76e−32 4.00 1.83
M4,2 22.20 5 1.28e−01 4.76e−03 5.10e−08 1.94e−08 4.00 1.75
M4,3 22.25 4 2.56e−02 4.48e−08 3.67e−31 1.38e−30 4.00 1.31
M5,2 23.73 7 1.19E+01 8.05e−01 1.68e−01 1.12e−01 5.00 2.42
M6,1 26.47 5 1.63e−01 2.35e−03 7.64e−13 2.91e−13 6.00 1.91
M6,2 26.26 4 5.02e−03 7.33e−16 6.83e−93 2.57e−92 6.00 1.31

Ex. 3
M5,1 10.07 3 2.59e−04 6.33e−23 0 0 5.00 6.31
M4,1 4.34 4 2.30e−03 1.61e−15 3.83e−64 3.17e−64 4.00 10.33
M4,2 5.88 4 2.28e−02 6.05e−11 3.00e−45 2.48e−45 4.00 8.00
M4,3 5.95 4 2.08e−03 2.04e−15 1.89e−63 1.56e−63 4.00 7.83
M5,2 6.51 3 1.04e−03 4.49e−20 0 0 5.00 8.23
M6,1 7.26 3 2.95e−03 6.66e−22 0 0 6.00 7.09
M6,2 7.27 3 1.65e−04 9.40e−30 0 0 6.00 6.50

Ex. 4
M5,1 0.52 4 3.97e−01 1.78e−07 3.42e−39 8.93e−39 5.00 0.86
M4,1 0.17 4 3.97e−01 8.84e−07 2.07e−29 5.41e−29 4.00 1.23
M4,2 Diverges – – – – – – –
M4,3 0.26 5 6.49e−01 2.29e−05 3.65e−23 9.55e−23 4.00 1.02
M5,2 0.28 5 1.94E+00 2.83e−03 4.23e−17 1.11e−16 5.00 1.41
M6,1 Diverges – – – – – – –
M6,2 0.33 4 1.80e−01 2.28e−11 9.53e−71 2.49e−70 6.00 0.89

Ex. 5
M5,1 0.0721 3 8.78e−08 2.34e−51 0 0 5.00 4.71
M4,1 0.0230 3 7.92e−08 1.62e−39 0 0 4.00 12.72
M4,2 0.0323 4 1.13e−04 8.35e−21 8.22e−87 1.62e−84 4.00 15.97
M4,3 0.0350 3 4.31e−06 7.32e−32 0 0 4.00 8.00
M5,2 0.0373 3 1.04e−07 7.75e−49 0 0 5.00 10.89
M6,1 0.0415 3 3.25e−07 1.20e−45 0 0 6.00 12.92
M6,2 0.0447 3 1.32e−09 9.32e−68 0 0 6.00 5.82

Ex.6
M5,1 2.55e−03 4 5.01e−03 1.02e−17 3.64e−91 8.95e−91 5.00 19.97
M4,1 9.52e−04 4 5.46e−04 1.84e−19 2.34e−81 5.77e−81 4.00 26.72
M4,2 Diverges – – – – – – –
M4,3 1.66e−03 4 9.27e−03 1.48e−13 9.47e−57 2.33e−56 4.00 22.91
M5,2 Diverges – – – – – – –
M6,1 Diverges – – – – – – –
M6,2 2.12e−03 3 2.80e−04 1.35e−29 0 0 6.00 20.24
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Example 2. Consider the system of equations:

ti − cos
(
ti −

n∑
j=1,j ̸=i

tj

)
= 0, i = 1, 2, ..., n.

Taking n=5, and choosing the initial estimate, t(0)=
(
3
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)T
, the so-

lution so obtained is given as t∗=(0.390..., 0.390..., 0.390..., 0.390..., 0.390...)
T
.

Here, the efficiency parameters are estimated as; {m,µ, η} = {5, 98.23, 2.81}.

Example 3. Consider the nonlinear integral equation G(t) = 0, where

G(t)(s) = t(s)− 1 +
1

2

∫ 1

0

s cos(t(x))dx, s ∈ [0, 1], (4.1)

with t ∈ C[0, 1]. Here, C[0, 1] is defined as the space of continuous functions
on [0, 1] along with the norm, ∥t∥ = max |t(s)|, where s ∈ [0, 1]. This kind of
integral equation, particularly called Chandrasekhar equation (see [2]), arises
in the study of radiative transfer theory, neutron transport theory and kinetic
theory of gases.

Discretizing the Equation (4.1) using the Trapezoidal rule of integration
with the step size h = 1/n, the system of nonlinear equations is obtained as

ti − 1 +
si
2n

(1
2

cos(t0) +

n−1∑
j=1

cos(tj) +
1

2
cos(tn)

)
= 0, i = 1, 2, ..., n, (4.2)

where ti = t(xi), si = xi =
i
n and t0 = 1

2 . Selecting n = 10, the solution of the
transformed problem (4.2) is

t∗ = (0.9654..., 0.9309..., 0.8964..., 0.8619..., 0.8274...,

0.7929..., 0.7584..., 0.7239..., 0.6894..., 0.6549...)T .

For the comparison analysis, let us set the initial estimate as (2,
10· · ·, 2)T . In this

problem, the specific values of parameters are; {m,µ, η} = {10, 99.33, 2.81}.

Example 4. Next, considering the system of nonlinear equations as:{
titi+1 − e−ti − e−ti+1 = 0, i = 1, 2, ..., n− 1,

tnt1 − e−tn − e−t1 = 0.

Taking n = 50, and choosing the initial estimate t(0) =
(
5
2 ,

50· · ·, 5
2

)T
to obtain

the following solution,

t∗ =
(
0.9012..., 0.9012..., · · · · · · , 0.9012...

)T
.

The values of parameters in this particular problem are computed as; {m,µ, η} =
{50, 91.48, 2.81}.



Development and analysis of an efficient Jacobian-free method 271

Example 5. Now, consider the system of equations as:

tan−1(ti) + 1− 2

 n∑
j=1,j ̸=i

tj

 = 0, i = 1, 2, ..., n.

Selecting n = 100, let us choose the estimate t(0) = (−1,
100· · ·,−1)T for solution,

t∗ = (0.00507..., 0.00507...., · · · · · · , 0.00507....)T .

Here, the estimated values of parameters are; {m,µ, η} = {100, 174.24, 2.81}.

Example 6. Lastly, we consider a large system of 500 equations,{
ti + log(2 + ti + ti+1) = 0, i = 1, 2, ..., 499,

t500 + log(2 + t500 + t1) = 0.

To obtain its solution,

t∗ = (−0.3149...,−0.3149..., · · · · · · ,−0.3149...)
T
,

we select the initial estimate t(0) =
(
− 1

2 ,
500· · ·,− 1

2

)T
. In this case, the values of

parameters are; {m,µ, η} = {500, 78.31, 2.81}.

Analyzing the findings from Table 2, it can be deduced that the proposed
method M5,1 is computationally more efficient in comparison to the existing
methods. The efficiency index of M5,1 is highest in each case barring a case
of Example 1, wherein the efficiency of sixth-order methods is comparatively
higher. It can be clearly observed that the proposed method requires less or
equal number of iterations to converge, whereas there are some cases wherein
the existing methods are diverging in accordance with the specified criteria.
Further, the errors in successive iterations evidently imply the high degree of
precision of the new method, even for the sufficiently large systems. In majority
of the cases, the proposed method utilizes less CPU time. In addition, the fifth
order convergence is also proven numerically through computing ACOC.

4.1 Applications

Here, we examine the efficacy of new method by obtaining solution to some
initial and boundary value problems, and display the outcome in respect of: (i)
Number of iterations (k), (ii) Efficiency index (E) and (iii) CPU time.

4.1.1 Van der Pol-Rayleigh problem

Consider a problem of hybrid Van der Pol-Rayleigh oscillator [8] with external
sinusoidal forcing, which has applications to many physical systems including
the bipedal robot locomotion. It is presented as,

d2x

dt2
+ x− ϵ

(
1− ax2 − b

(
dx

dt

)2 )
dx

dt
= A sin(ωt), t ≥ 0, (4.3)

x(0) = 1, x′(0) = 1,

Math. Model. Anal., 30(2):254–276, 2025.

https://doi.org/10.3846/mma.2025.21097


272 J.R. Sharma, H. Singh and S. Kumar

where, x(t) is the position coordinate, ϵ is a damping parameter, A represents
the amplitude of oscillations with pulsation ω, and a, b are constants. The
given problem is investigated in [8] for the different sets of parameters’ values.
To be specific, we take ϵ = 1/100, A = 1, ω = 3 and a = b = 1.

To obtain the numerical solution of (4.3) in region 0 ≤ t ≤ 1, consider a
partitioning of [0, 1], with each sub-interval of uniform length h = 1/n, as

0 = t0 < t1 < t2 < · · · < tn−1 < tn = 1, where ti = t0 + ih, (i = 1, 2, . . . , n).

Denote x(ti) = xi for each i = 1, . . . , n. Then, approximating the first and
second order derivatives by using the finite differences

x′
i =

xi − xi−1

h
, x′′

i =
xi − 2xi−1 + xi−2

h2
,

the following system of nonlinear equations in n variables is obtained by trans-
forming the Equation (4.3),

xi−2xi−1+xi−2

h2
+xi−

1

100

(
1−x2

i−
(xi−xi−1)

2

h2

)xi − xi−1

h
− sin(3ti) = 0,

where i = 1, . . . , n. Setting n = 25, the above system reduces to 25 nonlinear
equations for which the approximate solution is plotted in Figure 7. Initial

estimate to the given solution is selected as; ( 32 ,
25· · ·, 3

2 )
T , and estimated values

of parameters for this problem are; {m,µ, η} = {25, 6.96, 2.81}. Numerical
performance of the methods is displayed in the Table 3, wherein it can be
observed that the method M5,1 has highest efficiency index for the given case.
Further, it takes least number of iterations to converge whereas most of the
considered comparison methods are diverging.

Figure 7. Approximate solution of Van der Pol-Rayleigh oscillator equation.

4.1.2 Fisher’s equation

Consider the Fisher’s equation [16], which specifically models the growth of
particles in reaction-diffusion system and it is expressed as

∂u

∂t
= δ

∂2u

∂x2
+ u(1− u), (4.4)
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Table 3. Comparison of performance of methods for boundary value problems

Method M5,1 M4,1 M4,2 M4,3 M5,2 M6,1 M6,2

Van der Pol problem

k 5 Diverges Diverges 6 Diverges Diverges 7
E 2.065 – – 1.336 – – 1.601
CPUt 0.719 – – 1.407 – – 1.328
Fisher equation

k 4 5 4 5 5 4 4
E 0.365 0.150 0.164 0.269 0.187 0.209 0.328
CPUt 1.125 1.734 1.281 1.566 2.266 1.75 1.659
Heat conduction problem

k 3 4 3 4 3 3 3
E 6.89e−03 2.90e−03 3.00e−03 5.57e−03 3.47e−03 3.87e−03 7.06e−03
CPUt 5.063 17.172 13.719 9.187 9.406 13.157 8.112

where u = u(x, t) with x and t as spatial and temporal domains, and δ is
the diffusion coefficient. The boundary conditions on u(x, t) are imposed as:
∂u
∂x (0, t) = 0 and ∂u

∂x (1, t) = 0 for all t ≥ 0, along with the initial condition as:
u(x, 0) = 3

2+
1
2 cos(πx) for 0 ≤ x ≤ 1. Consider the domainD = {(x, t) | (x, t) ∈

[0, 1]× [0, 1]} with the partition of step size h = 1/p and s = 1/q, respectively
for the domains x and t, i.e.,

xi = 0 + ih, i=0, 1, . . . , p, h=1/p, and tj=0+jk, j = 0, 1, . . . , q, k = 1/q.

Denote u(xi, tj) = ui,j for each i, j and then approximating the Equation (4.4)
at any point (xi, tj) using the finite differences,

∂u

∂t
=

ui,j − ui,j−1

s
,

∂2u

∂x2
=

ui+1,j − 2ui,j + ui−1,j

h2
,

the given equation reduces into a system of (p−1)×q equations. Then, selecting
p = 11, q = 10 and taking δ = 1 in particular, the numerical solution of the

system is plotted in the Figure 8. Starting with the approximation (3,
100· · ·, 3)T ,

the performance of methods is depicted in Table 3. The estimated values of
parameters are; {m,µ, η} = {100, 3.8, 2.81}. Results so obtained clearly show
the better computational efficiency of new method than existing ones.

4.1.3 Heat conduction problem

Lastly, let us consider a particular case of heat conduction problem (see [10]).
Let u = u(x, t), where x and t are the spatial and temporal domains, respec-
tively, then the equation is described as follows:

∂2u

∂x2
=

∂u

∂x
+

∂u

∂t
− u2 + g(x, t), 0 ≤ x ≤ 1, t ≥ 0, (4.5)
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Figure 8. Approximate solution of Fisher equation.

where g(x, t) is defined as, g(x, t) = e−t(−π cos(πx) − (π2 − 2) sin(πx)). The
boundary conditions are u(0, t) = 0 and u(1, t) = 0, whereas the initial condi-
tion is used as u(x, 0) = sin(πx). By choosing the maximum value of t = 1,
we select the partition of domain [0, 1] × [0, 1] as xi = 0 + ih, tj = 0 + jk, for
i = 0, 1, . . . , p and j = 0, 1, . . . , q, where h = 1/p and k = 1/q. Let us denote
ui,j = u(xi, tj) and gi,j = g(xi, tj) for each i and j. Then, the initial condition
is transformed as: ui,0 = sin(πih) for each i = 0, 1, 2, . . . , p, and the boundary
conditions as: u0,j = 0, up,j = 0 for each j = 0, 1, 2, . . . , q. To discretize the
Equation (4.5), consider the following approximations:

∂u

∂x
=

ui+1,j − ui−1,j

2h
,
∂u

∂t
=

ui,j − ui,j−1

k
and

∂2u

∂x2
=

ui+1,j − 2ui,j + ui−1,j

h2
,

and consequently, the system of (p− 1)× q nonlinear equations is obtained as,

(2−h)kui+1,j−2(2k+h2)ui,j+(2+h)kui−1,j+2kh2u2
i,j+2h2ui,j−1 = 2kh2gi,j ,

where i = 1, 2, . . . , p − 1, and j = 1, 2, . . . , q. Fixing p = 21 and q = 20, the
system reduces to 20× 20 nonlinear equations.

Figure 9. Approximate solution of heat conduction equation.

The approximate solution of the problem is presented in Figure 9, for which

the initial estimate is selected as; ( 12 ,
400· · ·, 1

2 )
T . The estimated values of parame-

ters in this problem are; {m,µ, η} = {400, 5.8, 2.81}. Numerical performance of
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the methods is displayed in Table 3, which clearly signifies the efficient behavior
of the proposed method, even for such a large system of equations.

5 Conclusions

With an objective to develop the derivative-free method for solving systems of
nonlinear equations, a multi-step formulation is presented initially in particular
for the solution of uni-variate equations. The basic principle of construction is
to extend the Traub-Steffensen method to a higher-order technique by introduc-
ing some undetermined parameters at the subsequent sub-steps. Determining
these parameters so as to achieve the highest possible convergence order, the
given scheme is found to possess the fifth order of convergence. Generalizing the
presented scheme to a multidimensional case, the method is proven to main-
tain its fifth order of convergence. The generalized scheme is then analyzed
comprehensively for its computational aspects and numerical performance. In-
troducing some necessary parameters to further compute the efficiency index,
the computational efficiency is examined in analytical as well as geometrical
approach. It is found that the proposed method achieves the higher efficiency
index as compared to the existing methods of similar nature, even for the suf-
ficiently large values of m. Finally, the performance is tested and compared
by solving the systems of nonlinear equations along with some boundary value
problems. In general, the proposed method exhibits remarkable results in com-
parison to the existing counterparts by showing the better numerical accuracy,
higher efficiency index and less CPU time. Similar numerical experimentations
have been carried out for a number of problems and results are found to be on
a par with those presented here.
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