

MATHEMATICAL MODELLING and ANALYSIS 2025 Volume 30 Issue 2 Pages 224–232

https://doi.org/10.3846/mma.2025.21702

Calderón-Zygmund estimates for Schrödinger equations revisited

Le Xuan Truong^a, Nguyen Ngoc Trong^b and Tan Duc Do^{a \square}

 ^a University of Economics Ho Chi Minh City (UEH), Ho Chi Minh City, Vietnam
 ^b Department of Mathematics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam

Article History: received June 17, 2024 revised September 20, 2024 accepted October 11, 2024	Abstract. We establish a global Calderón-Zygmund estimate for a quasilinear elliptic equation with a potential. If the potential has a reverse Hölder property, then the estimate was known in [6]. In this note, we observe that the estimate remains valid when the potential is merely Lebesgue integrable. Our proof is short and elementary.
Keywords: Calderón-Zygmund estimates; guasilinear Schrödinger equation.	

AMS Subject Classification: 35J10; 35J92; 35B65.

Corresponding author. E-mail: tandd.am@ueh.edu.vn

1 Introduction

This paper targets the equation

$$\begin{cases} -\operatorname{div} \mathbf{A}(x, \nabla u) + V |u|^{p-2} u = -\operatorname{div}(|F|^{p-2} F) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

in which the following *structural conditions* are imposed:

- $n \in \{2, 3, 4, \ldots\}, p \in (1, \infty)$ and $\Omega \subset \mathbb{R}^n$ is an open bounded domain that is (δ_0, r_0) -Reifenberg flat and at the same time (δ_0, r_0) -vanishing for some small constants $\delta_0, r_0 > 0$. See Definitions 2 and 3 below.
- $\mathbf{A} : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a Carathédory function, in the sense that \mathbf{A} is measurable in the first variable and differentiable in the second variable. Moreover, there exist constants $0 < \Lambda_0 \leq \Lambda_1 < \infty$ such that

$$\nabla_{\xi} \mathbf{A}(x,\xi) \,\eta \cdot \eta \ge \Lambda_0 \,|\xi|^{p-2} \,|\eta|^2$$

Copyright © 2025 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

and

$$\left|\mathbf{A}(x,\xi)\right| + \left|\nabla_{\xi}\mathbf{A}(x,\xi)\right| \left|\xi\right| \le \Lambda_1 \left|\xi\right|^{p-1}$$

for a.e. $x \in \mathbb{R}^n$ and for all $\xi, \eta \in \mathbb{R}^n$.

- $F \in L^q(\Omega, \mathbb{R}^n)$ for some q > p.
- $V \in L^{\gamma}(\Omega)$ with

$$\gamma \in \begin{cases} \left(\frac{n}{p}, n\right), & \text{if } p < n, \\ (1, n), & \text{if } p \ge n. \end{cases}$$
(1.2)

The aim is to derive a Calderón-Zygmund estimate for a weak solution to (1.1). A weak solution to (1.1) is understood as follows:

DEFINITION 1. A function $u \in W_0^{1,p}(\Omega) \cap L^p(\Omega, Vdx)$ is called a weak solution of (1.1) if

$$\int_{\Omega} \mathbf{A}(x, \nabla u) \cdot \nabla \varphi \, dx + \int_{\Omega} V \, |u|^{p-2} \, u \, \varphi \, dx = \int_{\Omega} F \cdot \nabla \varphi \, dx \tag{1.3}$$

for all $\varphi \in W^{1,p}_0(\varOmega) \cap L^p(\varOmega,Vdx),$ where

$$L^{p}(\Omega, Vdx) := \left\{ \text{measurable function } g : \Omega \longrightarrow \mathbb{R} : \int_{\Omega} |g|^{p} V \, dx < \infty \right\}.$$

If the potential V is non-negative and belongs to a reverse Hölder class $B^{\gamma},$ in the sense that

$$\sup\left(\oint_{B} V \, dx\right)^{-1} \, \left(\oint_{B} V^{\gamma} \, dx\right)^{\frac{1}{\gamma}} < \infty,$$

where γ is given by (1.2) and the supremum is taken over all balls $B \subset \mathbb{R}^n$, then [6, Corollary 2.6] established the global Calderón-Zygmund estimate

$$\|\nabla u\|_{L^{q}(\Omega)} + \mathbb{1}_{[q < \gamma p]} \|V^{\frac{1}{p}} u\|_{L^{q}(\Omega)} \lesssim \|F\|_{L^{q}(\Omega)}$$
(1.4)

for all $p < q < \gamma^*(p-1)$, where

$$\mathbb{1}_{[q < \gamma p]} := \begin{cases} 1, & \text{if } q < \gamma p, \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad \gamma^* := \begin{cases} \frac{n \gamma}{n - \gamma}, & \text{if } \gamma < n, \\ \infty, & \text{otherwise.} \end{cases}$$
(1.5)

In this note, we show that the condition $V \in B^{\gamma}$ can be removed, and yet (1.4) remains valid. In fact, our aforementioned structural conditions require $V \in L^{\gamma}(\Omega)$ only. Unlike [6], we make no use of the uniform estimate [6, Lemma 3.5] which is crucial in their consideration. Moreover, our proof is short and elementary.

The first regularity estimates of type (1.4) can be traced back to the work [8]. Specifically, [8, Corollary 0.10] asserts that a weak solution u to the Schrödinger equation

$$-\Delta u + V u = -\operatorname{div} F \quad \text{in } \mathbb{R}^n$$

satisfies

$$\|\nabla u\|_{L^q(\mathbb{R}^n)} + \mathbb{1}_{[q<2\gamma]} \|V^{\frac{1}{2}} u\|_{L^q(\mathbb{R}^n)} \lesssim \|F\|_{L^q(\mathbb{R}^n)} \quad \text{for all } q \in \left[(\gamma^*)', \gamma^*\right] \setminus \{\infty\},$$

where $V \in B^{\gamma}$ with $\gamma \geq \frac{n}{2}$. Moreover, this range for q is optimal (cf. [8, Section 7]).

Further extensions are available in [1,2,3,7] for elliptic equations with discontinuous coefficients and in [4,9,10,11] for parabolic Schrödinger equations.

Before stating our main result, we provide the notions of (δ_0, r_0) -Reifenberg flat and (δ_0, r_0) -vanishing domains required by the structural conditions.

DEFINITION 2. Let $\delta_0 \in (0, \frac{1}{8})$ and $r_0 > 0$. Then Ω is called a (δ_0, r_0) -Reifenberg flat domain if for all $x \in \partial \Omega$ and $r \in (0, r_0]$, there exists a new coordinate system $\{y_1, \ldots, y_n\}$ in which x is the origin and

$$B_r(0) \cap \{y_n > \delta_0 r\} \subset B_r(0) \cap \Omega \subset B_r(0) \cap \{y_n > -\delta_0 r\}.$$

DEFINITION 3. Let $\delta_0, r_0 > 0$. We say that **A** is (δ_0, r_0) -vanishing if

$$\sup_{\substack{0 < r \le r_0 \\ x \in \mathbb{R}^n}} \oint_{B_r(x)} \Theta[\mathbf{A}, B_r(x)](y) \, dy \le \delta_0$$

for all $r \in (0, r_0)$, where

$$\Theta \big[\mathbf{A}, B_r(x) \big](y) := \sup_{0 \neq \xi \in \mathbb{R}^n} \frac{|\mathbf{A}(y, \xi) - \mathbf{A}_{B_r(x)}(\xi)|}{|\xi|^{p-1}},$$
$$\mathbf{A}_{B_r(x)}(\xi) := \int_{B_r(x)} \mathbf{A}(y, \xi) \, dy.$$

With these in mind, the global Calderón-Zygmund estimate is formulated as follows.

Theorem 1. Assume the structural conditions. Let u be a weak solution to (1.1). Then there exists a constant $\delta_0 = \delta_0(n, \Lambda_0, \Lambda_1, p) > 0$ such that if Ω is (δ_0, r_0) -Reifenberg flat and \mathbf{A} is (δ_0, r_0) -vanishing for some $r_0 \in (0, 1)$, then,

$$\|\nabla u\|_{L^{q}(\Omega)} + \mathbb{1}_{[q < p\gamma]} \|V^{\frac{1}{p}} u\|_{L^{q}(\Omega)} \leq C \left(\frac{\operatorname{diam}(\Omega)}{r_{0}}\right)^{\frac{n}{p} - \frac{n}{q}} \times \left(\|\nabla u\|_{L^{p}(\Omega)} + \|F\|_{L^{q}(\Omega)}\right)$$
(1.6)

for all $q \in (p, \gamma^*(p-1))$, where $C = C(n, \Lambda_0, \Lambda_1, \gamma, p, q, ||V||_{L^{\gamma}(\Omega)}) > 0$ and γ^* is given by (1.5).

Two remarks are immediate.

Remark 1. When $V \ge 0$ in Theorem 1, we further derive that

$$\|\nabla u\|_{L^p(\Omega)} \le C(p,\Lambda_0) \|F\|_{L^p(\Omega)} \le C(p,\Lambda_0) \operatorname{diam}(\Omega)^{\frac{n}{p}-\frac{n}{q}} \|F\|_{L^q(\Omega)}$$

by using u as a test function in (1.3). Consequently, (1.6) can be written more succinctly as

$$\|\nabla u\|_{L^q(\Omega)} + \mathbb{1}_{[q < p\gamma]} \|V^{\frac{1}{p}} u\|_{L^q(\mathbb{R}^n)} \le C \left(\frac{\operatorname{diam}(\Omega)}{r_0}\right)^{2\left(\frac{n}{p} - \frac{n}{q}\right)} \|F\|_{L^q(\Omega)}$$

where $C = C(n, \Lambda_0, \Lambda_1, \gamma, p, q, ||V||_{L^{\gamma}(\Omega)}) > 0.$

Remark 2. If $V \in B^{\gamma}$ in Theorem 1, then the endpoint case $\gamma = \frac{n}{p}$ may also be included due to the self-improving property of this class.

2 Proof of Theorem 1

Given an exponent $q \in (1, \infty)$, we define

$$q_* := \frac{nq}{n+q} \quad \text{and} \quad q^* := \begin{cases} \frac{nq}{n-q}, & \text{if } 1 < q < n, \\ \infty, & \text{if } q \ge n, \end{cases}$$

whence

$$(q^*)_* = (q_*)^* = q,$$
 for all $1 < q < n$

Our proof of Theorem 1 rests upon the estimate from [5, Corollary 2.5].

Proposition 1. The following statements hold.

(a) Let p > 1 and $s > \max \{p, n(p-1)/(n-1)\}$. Assume that $f \in L^{(s/(p-1))_*}(\Omega)$ and $F \in L^s(\Omega)$. Let u be a weak solution to (1.1). Then there exists a constant $\delta_0 = \delta_0(n, \Lambda_0, \Lambda_1, p) > 0$ such that if Ω is (δ_0, r_0) -Reifenberg flat and \mathbf{A} is (δ_0, r_0) -vanishing for some $r_0 \in (0, 1)$, then,

$$\|\nabla u\|_{L^{s}(\Omega)} \leq C \left(\frac{\operatorname{diam}(\Omega)}{r_{0}}\right)^{\frac{n}{p}-\frac{n}{s}} \left(\|f\|_{L^{\left(\frac{s}{p-1}\right)_{*}(\Omega)}}^{\frac{1}{p-1}} + \|F\|_{L^{s}(\Omega)}\right),$$

where $C = C(n, \Lambda_0, \Lambda_1, p, s) > 0$.

(b) Let p > n and $p < s \le \frac{n(p-1)}{n-1}$ and 1 < w < n. Assume that $f \in L^w(\Omega)$ and $F \in L^s(\Omega)$. Let u be a weak solution to (1.1). Then there exists a constant $\delta_0 = \delta_0(n, \Lambda_0, \Lambda_1, p) > 0$ such that if Ω is (δ_0, r_0) -Reifenberg flat and \mathbf{A} is (δ_0, r_0) -vanishing for some $r_0 \in (0, 1)$, then,

$$\|\nabla u\|_{L^{s}(\Omega)} \leq C \left(\frac{\operatorname{diam}(\Omega)}{r_{0}}\right)^{\frac{n}{p} - \frac{n}{w^{*}(p-1)}} \left(\|f\|_{L^{w}(\Omega)}^{\frac{1}{p-1}} + \|F\|_{L^{s}(\Omega)}\right),$$

where $C = C(n, \Lambda_0, \Lambda_1, p, s, w) > 0.$

In Proposition 1, if p < n then,

$$\max\{p, n\,(p-1)/(n-1)\} = p$$

and Part (a) asserts that the global Calderón-Zygmund estimate

$$\|\nabla u\|_{L^{s}(\Omega)} \lesssim \|f\|_{L^{t}(\Omega)}^{\frac{1}{p-1}} + \|F\|_{L^{s}(\Omega)}$$
(2.1)

is valid for all s > p (and suitable t). Whereas, if $p \ge n$ then Parts (a) and (b) together ensure that (2.1) is again valid for all s > p (and suitable t).

Hereafter, we always assume the structural conditions. The next observation is also crucial.

Lemma 1. Let u be a weak solution to (1.1).

(i) Let $1 . Suppose further that <math>|\nabla u| \in L^{s}(\Omega)$ for some $p \le s < n$. Then $V|u|^{p-2} u \in L^{\left(\frac{s^{\sharp}}{p-1}\right)_{*}}(\Omega)$, where

$$s^{\sharp} := \frac{n\gamma(p-1)s}{n(p-1)\gamma - (p\gamma - n)s} \in (s, \gamma^* (p-1)).$$

In particular, s^{\sharp} is increasing as a function of s with

$$s^{\sharp} - s > h \coloneqq \frac{(p\gamma - n) p^2}{n(p-1)\gamma} > 0, \quad \lim_{s \to n^-} s^{\sharp} = \gamma^* (p-1).$$

Moreover, there exists a constant $C = C(n, \gamma, p, s) > 0$ such that

$$\left\| V |u|^{p-1} \right\|_{L^{\left(\frac{s^{\sharp}}{p-1}\right)_{*}(\varOmega)}}^{\frac{1}{p-1}} \leq C \, \|V\|_{L^{\gamma}(\varOmega)}^{\frac{1}{p-1}} \, \|\nabla u\|_{L^{s}(\varOmega)}$$

(ii) Let $p \ge n$. Suppose further that $p < q < \gamma^* (p-1)$. Then $V|u|^{p-2} u \in L^{\left(\frac{q}{p-1}\right)_*}(\Omega)$.

Moreover, there exists a constant $C = C(n, \gamma, p, q) > 0$ such that

$$\left\| V|u|^{p-1} \right\|_{L^{\left(\frac{q}{p-1}\right)_{*}(\Omega)}}^{\frac{1}{p-1}} \leq C \left\| V \right\|_{L^{\gamma}(\Omega)}^{\frac{1}{p-1}} \left\| \nabla u \right\|_{L^{p}(\Omega)}.$$

Proof. (i) One has

$$\frac{1}{s^{\sharp}} = \frac{1}{s} - \frac{p\gamma - n}{n(p-1)\gamma}.$$
(2.2)

It follows that s^{\sharp} is increasing as a function of s. At the same time,

$$\frac{1}{s} > \frac{1}{s^{\sharp}} > \frac{1}{n} - \frac{p\gamma - n}{n(p-1)\gamma} = \frac{n-\gamma}{n(p-1)\gamma} = \frac{1}{\gamma^* \left(p-1\right)}.$$

Equivalently, $s < s^{\sharp} < \gamma^{*} (p-1)$. Still in view of (2.2),

$$s^{\sharp} - s = \frac{p\gamma - n}{n(p-1)\gamma} s \, s^{\sharp} > \frac{(p\gamma - n) \, p^2}{n(p-1)\gamma} > 0,$$
$$\lim_{s \to n^-} \frac{1}{s^{\sharp}} = \frac{1}{n} - \frac{p\gamma - n}{n(p-1)\gamma} = \frac{1}{\gamma^* \, (p-1)}.$$

228

Next,

$$\left(\frac{s^{\sharp}}{p-1}\right)_{*} = \frac{ns^{\sharp}}{n(p-1)+s^{\sharp}}$$

and our choice of s^{\sharp} guarantees that

$$\frac{\gamma \left[n(p-1)+s^{\sharp}\right]}{ns^{\sharp}} > 1, \tag{2.3}$$

$$0 < \frac{n\gamma(p-1)s^{\sharp}}{n\gamma(p-1) - (n-\gamma)s^{\sharp}} = s^{*},$$
(2.4)

while $u \in L^{s^*}(\Omega)$ due to Sobolev's embedding theorem. We have

$$\begin{split} \left\| V|u|^{p-1} \right\|_{L^{\left(\frac{s^{\sharp}}{p-1}\right)_{*}}(\Omega)}^{\left(\frac{s^{\sharp}}{p-1}\right)_{*}}(\Omega)} &= \int_{\Omega} |V|^{\frac{ns^{\sharp}}{n(p-1)+s^{\sharp}}} |u|^{\frac{n(p-1)s^{\sharp}}{n(p-1)+s^{\sharp}}} dx \\ &\leq \left(\int_{\Omega} |V|^{\gamma} dx \right)^{\frac{ns^{\sharp}}{\gamma \left[n(p-1)+s^{\sharp} \right]}} \left(\int_{\Omega} |u|^{s^{*}} dx \right)^{\frac{n\gamma(p-1)-(n-\gamma)s^{\sharp}}{n\gamma(p-1)+\gamma s^{\sharp}}} \\ &\leq C(n,\gamma,p,s) \left(\int_{\Omega} |V|^{\gamma} dx \right)^{\frac{ns^{\sharp}}{\gamma \left[n(p-1)+s^{\sharp} \right]}} \left(\int_{\Omega} |\nabla u|^{s} dx \right)^{\frac{s^{*}}{s} \cdot \frac{n\gamma(p-1)-(n-\gamma)s^{\sharp}}{n\gamma(p-1)+\gamma s^{\sharp}}} \\ &= C(n,\gamma,p,s) \left\| V \right\|_{L^{\gamma}(\Omega)}^{\frac{ns^{\sharp}}{n(p-1)+s^{\sharp}}} \left\| \nabla u \right\|_{L^{s}(\Omega)}^{\frac{n(p-1)s^{\sharp}}{n(p-1)+s^{\sharp}}} \end{split}$$

by Hölder's inequality and Sobolev's embedding theorem in the second and third steps respectively. The claim then follows from this estimate.

(ii) We repeat the arguments in (i) and replace s^{\sharp} with q. The range for q ensures that (2.3) is still valid with q in place of s^{\sharp} , whereas (2.4) is replaced by

$$0 < \frac{n\gamma(p-1)q}{n\gamma(p-1) - (n-\gamma)q} < p^* := \infty.$$

Furthermore, $u \in L^t(\Omega)$ for all $t \in (1, \infty)$ by Sobolev's embedding theorem. These enable us to proceed with Hölder's inequality and arrive at the conclusion as required. \Box

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. Let $q \in (p, \gamma^*(p-1))$. We divide the proof into two steps.

Step 1: We show that

$$\|\nabla u\|_{L^q(\Omega)} \le C \left(\frac{\operatorname{diam}(\Omega)}{r_0}\right)^{\frac{n}{p} - \frac{n}{q}} \left(\|\nabla u\|_{L^p(\Omega)} + \|F\|_{L^q(\Omega)}\right), \qquad (2.5)$$

where $C = C(n, \Lambda_0, \Lambda_1, \gamma, p, q, ||V||_{L^{\gamma}(\Omega)}) > 0$. By virtue of Lemma 1 and Proposition 1, it suffices to show that (2.5) holds for q < n.

Let q < n. We consider two cases as follows.

Case 1: Suppose 1 . By adjusting the step size <math>h in Lemma 1(i) to a smaller value when necessary, we may assume that q = p + kh for some $k \in \{1, 2, 3, ...\}$. Then the first application of Lemma 1(i) with s = p yields that

$$\left| V|u|^{p-1} \right\|_{L^{\left(\frac{p+h}{p-1}\right)_{*}(\Omega)}}^{\frac{1}{p-1}} \leq C(n,\gamma,p) \left\| V \right\|_{L^{\gamma}(\Omega)}^{\frac{1}{p-1}} \left\| \nabla u \right\|_{L^{p}(\Omega)}.$$

In turn, Proposition 1(a) with $f = V|u|^{p-2}u$ gives

$$\begin{aligned} \|\nabla u\|_{L^{p+h}(\Omega)} &\leq C \left(\frac{\operatorname{diam}(\Omega)}{r_0}\right)^{\frac{n}{p}-\frac{n}{p+h}} \left(\|V|u|^{p-1}\|_{L^{\left(\frac{p+h}{p-1}\right)_*(\Omega)}}^{\frac{1}{p-1}} + \|F\|_{L^q(\Omega)}\right) \\ &\leq C \left(\frac{\operatorname{diam}(\Omega)}{r_0}\right)^{\frac{n}{p}-\frac{n}{p+h}} \max\left\{1, \|V\|_{L^{\gamma}(\Omega)}^{\frac{1}{p-1}}\right\} \\ &\times \left(\|\nabla u\|_{L^p(\Omega)} + \|F\|_{L^q(\Omega)}\right), \end{aligned}$$

where $C = C(n, \Lambda_0, \Lambda_1, \gamma, p) > 0$. Iterating this last estimate $k = \frac{q-p}{h}$ times, we arrive at

$$\begin{aligned} \|\nabla u\|_{L^q(\Omega)} &\leq C \left(\frac{\operatorname{diam}(\Omega)}{r_0}\right)^{\frac{n}{p} - \frac{n}{q}} \max\left\{1, \|V\|_{L^{\gamma}(\Omega)}^{\frac{1}{p-1}}\right\}^{\frac{q-p}{h}} \\ &\times \left(\|\nabla u\|_{L^p(\Omega)} + \|F\|_{L^q(\Omega)}\right), \end{aligned}$$

where $C = C(n, \Lambda_0, \Lambda_1, \gamma, p, q) > 0$.

Case 2: Suppose $p \ge n$. In this case, Lemma 1(ii) tells us that $V|u|^{p-2} u \in L^{\left(\frac{q}{p-1}\right)_*}(\Omega)$. It is straightforward to verify that

$$1 < \left(q/(p-1)\right)_* < n.$$

Hence applying Proposition 1(a) and (b) yields (2.5) immediately. **Step 2**: We show that

$$\||V|^{\frac{1}{p}} u\|_{L^{q}(\Omega)} \leq C \left(\frac{\operatorname{diam}(\Omega)}{r_{0}}\right)^{\frac{n}{q}-\frac{n}{p}} \left(\|\nabla u\|_{L^{p}(\Omega)} + \|F\|_{L^{q}(\Omega)}\right)$$

for all $q \in (p, \gamma p)$, where $C = C(n, \gamma, p, q, ||V||_{L^{\gamma}(\Omega)}) > 0$.

To this end, it suffices to show that

$$\||V|^{\frac{1}{p}} u\|_{L^{q}(\Omega)} \leq C(n, \gamma, p, q) \|V\|_{L^{\gamma}(\Omega)}^{\frac{1}{p}} \|\nabla u\|_{L^{q}(\Omega)}$$

for all $q \in (p, \gamma p)$. Let $q \in (p, \gamma p)$. Recall that $\frac{n}{p} < \gamma < n$. Therefore,

$$\gamma pq/(\gamma p - q) < q^*.$$

At the same time, $u \in L^{q^*}(\Omega)$ since $|\nabla u| \in L^q(\Omega)$ by Step 1. Consequently, Hölder's inequality and Sobolev's embedding theorem give

$$\begin{split} \int_{\Omega} \left(|V|^{\frac{1}{p}} u \right)^{q} dx &\leq \left(\int_{\Omega} |V|^{\gamma} dx \right)^{\frac{q}{p\gamma}} \left(\int_{\Omega} |u|^{\frac{\gamma p q}{\gamma p - q}} \right)^{\frac{\gamma p - q}{\gamma p}} \\ &\leq C(n, \gamma, p, q) \left\| V \right\|_{L^{\gamma}(\Omega)}^{\frac{q}{p\gamma}} \left\| \nabla u \right\|_{L^{q}(\Omega)}^{q} \end{split}$$

as required. The theorem now follows by combining the estimates in Step 1 and Step 2 together. \Box

3 Concluding remark

Certain interest is also paid to the local version of (1.1) which is given by

$$\begin{cases} -\operatorname{div} \mathbf{A}(x, Du) + V |u|^{p-2} u = -\operatorname{div}(|F|^{p-2}F) & \text{in } \Omega_{2r}(y) \coloneqq B_{2r}(y) \cap \Omega, \\ u = 0 & \text{on } B_{2r}(y) \cap \partial \Omega & \text{if } B_{2r}(y) \not \subset \Omega, \end{cases}$$

$$(3.1)$$

where $y \in \overline{\Omega}$ and r > 0. A weak solution to (3.1) is understood in the sense of Definition 1 with Ω being replaced by Ω_{2r} .

Using analogous arguments as the above, we may also obtain a Calderón-Zygmund estimate for a weak solution to (3.1). Indeed, the arguments used to prove Theorem 1 is almost independent of the global property therein, with the exception being Proposition 1. The local counterpart of Proposition 1 can be found in [6, Theorems 2.3 and 2.4]). With this in mind, the local Calderón-Zygmund estimate can be stated as follows.

Theorem 2. Assume the structural conditions. Let u be a weak solution to (3.1). Then, there exists a constant $\delta_0 = \delta_0(n, \Lambda_0, \Lambda_1, p) > 0$ such that if Ω is (δ_0, r_0) -Reifenberg flat and \mathbf{A} is (δ_0, r_0) -vanishing for some $r_0 \in (0, 1)$, then,

$$\begin{aligned} \|\nabla u\|_{L^{q}(\Omega_{r2^{1-q/p}}(y))} &+ \mathbb{1}_{[q < p\gamma]} \|V^{\frac{1}{p}} u\|_{L^{q}(\Omega_{r2^{1-q/p}}(y))} \\ &\leq C \left(\|\nabla u\|_{L^{p}(\Omega_{2r}(y))} + \|F\|_{L^{q}(\Omega_{2r}(y))} \right) \end{aligned}$$

for all $q \in (p, \gamma^* (p-1)), y \in \overline{\Omega}$ and $r \in (0, \frac{r_0}{2}]$, where

 $C = C(n, \Lambda_0, \Lambda_1, \gamma, p, q, \|V\|_{L^{\gamma}(\Omega)}) > 0$

and γ^* is given by (1.5).

Acknowledgements

This research was funded by University of Economics Ho Chi Minh City, Vietnam.

References

- B. Bongioanni, E. Harboure and O. Salinas. Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal. Appl., 17(1):115–134, 2011. https://doi.org/10.1007/s00041-010-9133-6.
- [2] M. Bramanti, L. Brandolini, E. Harboure and B. Viviani. Global W^{2,p} estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition. Annali di Matematica, **191**(2):339–362, 2012. https://doi.org/10.1007/s10231-011-0186-1.
- [3] T.D. Do, L.X. Truong and N.N. Trong. Global Hessian estimates in Musielak-Orlicz spaces for a Schrödinger equation. *Michigan Math. J., Advance Publication*, pp. 1–15, 2024. https://doi.org/10.1307/mmj/20236341.
- [4] W. Gao and Y. Jiang. L^p estimate for parabolic Schrödinger operator with certain potentials. J. Math. Anal. Appl., **310**(1):128–143, 2005. https://doi.org/10.1016/j.jmaa.2005.01.049.
- [5] M. Lee and J. Ok. Nonlinear Calderón-Zygmund theory involving dual data. *Rev. Mat. Iberoamericana*, **35**(4):1053–1078, 2019. https://doi.org/10.4171/RMI/1078.
- [6] M. Lee and J. Ok. Interior and boundary W^{1,q}-estimates for quasi-linear elliptic equations of Schrödinger type. J. Differential Equations, 269(5):4406–4439, 2020. https://doi.org/10.1016/j.jde.2020.03.028.
- [7] G. Pan and L. Tang. Solvability for Schrödinger equations with discontinuous coefficients. J. Funct. Anal., 270(1):88–133, 2016. https://doi.org/10.1016/j.jfa.2015.10.004.
- [8] Z. Shen. L^p estimates for Schrödinger operators with certain potentials. Annales de l'Institut Fourier, 45(2):513–546, 1995. https://doi.org/10.5802/aif.1463.
- [9] N.N. Trong, L.X. Truong and T.D. Do. Calderón–Zygmund estimates for a parabolic Schrödinger system on Reifenberg domains. *Math. Methods Appl. Sci.*, 46(4):3797–3820, 2022. https://doi.org/10.1002/mma.8722.
- [10] N.N. Trong, L.X. Truong and T.D. Do. Higher-order parabolic Schrödinger operators on Lebesgue spaces. *Mediterr. J. Math.*, 19:181, 2022. https://doi.org/10.1007/s00009-022-02082-7.
- [11] N.N. Trong, L.X. Truong, T.D. Do and T.P.T. Lam. Optimal estimates in Musielak-Orlicz spaces for a parabolic Schrödinger equation. *Math. Inequal. Appl.*, 27(4):909–927, 2024. https://doi.org/10.7153/mia-2024-27-61.