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Abstract. We establish a global Calderón-Zygmund estimate for a

quasilinear elliptic equation with a potential. If the potential has a

reverse Hölder property, then the estimate was known in [6]. In this

note, we observe that the estimate remains valid when the potential

is merely Lebesgue integrable. Our proof is short and elementary.
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1 Introduction

This paper targets the equation−divA(x,∇u) + V |u|p−2 u = −div(|F |p−2 F ) in Ω,

u = 0 on ∂Ω,
(1.1)

in which the following structural conditions are imposed:

� n ∈ {2, 3, 4, . . .}, p ∈ (1,∞) and Ω ⊂ Rn is an open bounded domain
that is (δ0, r0)-Reifenberg flat and at the same time (δ0, r0)-vanishing for
some small constants δ0, r0 > 0. See Definitions 2 and 3 below.

� A : Rn × Rn −→ Rn is a Carathédory function, in the sense that A is
measurable in the first variable and differentiable in the second variable.
Moreover, there exist constants 0 < Λ0 ≤ Λ1 < ∞ such that

∇ξA(x, ξ) η · η ≥ Λ0 |ξ|p−2 |η|2
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and ∣∣A(x, ξ)
∣∣+ |∇ξA(x, ξ)| |ξ| ≤ Λ1 |ξ|p−1

for a.e. x ∈ Rn and for all ξ, η ∈ Rn.

� F ∈ Lq(Ω,Rn) for some q > p.

� V ∈ Lγ(Ω) with

γ ∈


(
n

p
, n

)
, if p < n,

(1, n), if p ≥ n.
(1.2)

The aim is to derive a Calderón-Zygmund estimate for a weak solution to
(1.1). A weak solution to (1.1) is understood as follows:

Definition 1. A function u ∈ W 1,p
0 (Ω)∩Lp(Ω, V dx) is called a weak solution

of (1.1) if ∫
Ω

A(x,∇u) · ∇φdx+

∫
Ω

V |u|p−2 uφdx =

∫
Ω

F · ∇φdx (1.3)

for all φ ∈ W 1,p
0 (Ω) ∩ Lp(Ω, V dx), where

Lp(Ω, V dx) :=

{
measurable function g : Ω −→ R :

∫
Ω

|g|p V dx < ∞
}
.

If the potential V is non-negative and belongs to a reverse Hölder class Bγ ,
in the sense that

sup

(
−
∫
B

V dx

)−1 (
−
∫
B

V γ dx

) 1
γ

< ∞,

where γ is given by (1.2) and the supremum is taken over all balls B ⊂ Rn,
then [6, Corollary 2.6] established the global Calderón-Zygmund estimate

∥∇u∥Lq(Ω) + 1[q<γp] ∥V
1
p u∥Lq(Ω) ≲ ∥F∥Lq(Ω) (1.4)

for all p < q < γ∗(p− 1), where

1[q<γp] :=

{
1, if q < γp,

0, otherwise
and γ∗ :=


nγ

n− γ
, if γ < n,

∞, otherwise.
(1.5)

In this note, we show that the condition V ∈ Bγ can be removed, and yet
(1.4) remains valid. In fact, our aforementioned structural conditions require
V ∈ Lγ(Ω) only. Unlike [6], we make no use of the uniform estimate [6, Lemma
3.5] which is crucial in their consideration. Moreover, our proof is short and
elementary.

The first regularity estimates of type (1.4) can be traced back to the work [8].
Specifically, [8, Corollary 0.10] asserts that a weak solution u to the Schrödinger
equation

−∆u+ V u = −divF in Rn
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satisfies

∥∇u∥Lq(Rn)+1[q<2γ] ∥V
1
2 u∥Lq(Rn) ≲ ∥F∥Lq(Rn) for all q ∈

[
(γ∗)′, γ∗]\{∞},

where V ∈ Bγ with γ ≥ n
2 . Moreover, this range for q is optimal (cf. [8, Section

7]).
Further extensions are available in [1, 2, 3, 7] for elliptic equations with dis-

continuous coefficients and in [4, 9, 10,11] for parabolic Schrödinger equations.
Before stating our main result, we provide the notions of (δ0, r0)-Reifenberg

flat and (δ0, r0)-vanishing domains required by the structural conditions.

Definition 2. Let δ0 ∈ (0, 1
8 ) and r0 > 0. Then Ω is called a (δ0, r0)-

Reifenberg flat domain if for all x ∈ ∂Ω and r ∈ (0, r0], there exists a new
coordinate system {y1, . . . , yn} in which x is the origin and

Br(0) ∩ {yn > δ0 r} ⊂ Br(0) ∩Ω ⊂ Br(0) ∩ {yn > −δ0 r}.

Definition 3. Let δ0, r0 > 0. We say that A is (δ0, r0)-vanishing if

sup
0<r≤r0

x∈Rn

−
∫
Br(x)

Θ
[
A, Br(x)

]
(y) dy ≤ δ0

for all r ∈ (0, r0), where

Θ
[
A, Br(x)

]
(y) := sup

0̸=ξ∈Rn

|A(y, ξ)−ABr(x)(ξ)|
|ξ|p−1

,

ABr(x)(ξ) := −
∫
Br(x)

A(y, ξ) dy.

With these in mind, the global Calderón-Zygmund estimate is formulated
as follows.

Theorem 1. Assume the structural conditions. Let u be a weak solution to
(1.1). Then there exists a constant δ0 = δ0(n,Λ0, Λ1, p) > 0 such that if Ω is
(δ0, r0)-Reifenberg flat and A is (δ0, r0)-vanishing for some r0 ∈ (0, 1), then,

∥∇u∥Lq(Ω) + 1[q<pγ] ∥V
1
p u∥Lq(Ω) ≤ C

(
diam(Ω)

r0

)n
p −n

q

×
(
∥∇u∥Lp(Ω) + ∥F∥Lq(Ω)

)
(1.6)

for all q ∈
(
p, γ∗ (p−1)

)
, where C=C(n,Λ0, Λ1, γ, p, q, ∥V ∥Lγ(Ω)) > 0 and γ∗

is given by (1.5).

Two remarks are immediate.

Remark 1. When V ≥ 0 in Theorem 1, we further derive that

∥∇u∥Lp(Ω) ≤ C(p, Λ0) ∥F∥Lp(Ω) ≤ C(p, Λ0) diam(Ω)
n
p −n

q ∥F∥Lq(Ω)
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by using u as a test function in (1.3). Consequently, (1.6) can be written more
succinctly as

∥∇u∥Lq(Ω) + 1[q<pγ] ∥V
1
p u∥Lq(Rn) ≤ C

(
diam(Ω)

r0

)2
(

n
p −n

q

)
∥F∥Lq(Ω),

where C = C(n,Λ0, Λ1, γ, p, q, ∥V ∥Lγ(Ω)) > 0.

Remark 2. If V ∈ Bγ in Theorem 1, then the endpoint case γ = n
p may also be

included due to the self-improving property of this class.

2 Proof of Theorem 1

Given an exponent q ∈ (1,∞), we define

q∗ :=
nq

n+ q
and q∗ :=

{
nq
n−q , if 1 < q < n,

∞, if q ≥ n,

whence
(q∗)∗ = (q∗)

∗ = q, for all 1 < q < n.

Our proof of Theorem 1 rests upon the estimate from [5, Corollary 2.5].

Proposition 1. The following statements hold.

(a) Let p > 1 and s > max
{
p, n(p− 1)/(n− 1)

}
. Assume that

f ∈ L(s/(p−1))∗(Ω) and F∈Ls(Ω). Let u be a weak solution to (1.1).
Then there exists a constant δ0 = δ0(n,Λ0, Λ1, p) > 0 such that if Ω is
(δ0, r0)-Reifenberg flat and A is (δ0, r0)-vanishing for some r0 ∈ (0, 1),
then,

∥∇u∥Ls(Ω) ≤ C

(
diam(Ω)

r0

)n
p −n

s
(
∥f∥

1
p−1

L
( s

p−1 )∗ (Ω)

+ ∥F∥Ls(Ω)

)
,

where C = C(n,Λ0, Λ1, p, s) > 0.

(b) Let p > n and p < s ≤ n(p−1)
n−1 and 1 < w < n. Assume that f ∈ Lw(Ω)

and F ∈ Ls(Ω). Let u be a weak solution to (1.1). Then there exists a
constant δ0 = δ0(n,Λ0, Λ1, p) > 0 such that if Ω is (δ0, r0)-Reifenberg
flat and A is (δ0, r0)-vanishing for some r0 ∈ (0, 1), then,

∥∇u∥Ls(Ω) ≤ C

(
diam(Ω)

r0

)n
p − n

w∗(p−1)
(
∥f∥

1
p−1

Lw(Ω) + ∥F∥Ls(Ω)

)
,

where C = C(n,Λ0, Λ1, p, s, w) > 0.

In Proposition 1, if p < n then,

max
{
p, n (p− 1)/(n− 1)

}
= p
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and Part (a) asserts that the global Calderón-Zygmund estimate

∥∇u∥Ls(Ω) ≲ ∥f∥
1

p−1

Lt(Ω) + ∥F∥Ls(Ω) (2.1)

is valid for all s > p (and suitable t). Whereas, if p ≥ n then Parts (a) and (b)
together ensure that (2.1) is again valid for all s > p (and suitable t).

Hereafter, we always assume the structural conditions. The next observa-
tion is also crucial.

Lemma 1. Let u be a weak solution to (1.1).

(i) Let 1 < p < n. Suppose further that |∇u| ∈ Ls(Ω) for some p ≤ s < n.

Then V |u|p−2 u ∈ L

(
s♯

p−1

)
∗(Ω), where

s♯ :=
nγ(p− 1)s

n(p− 1)γ − (pγ − n) s
∈
(
s, γ∗ (p− 1)

)
.

In particular, s♯ is increasing as a function of s with

s♯ − s > h :=
(pγ − n) p2

n(p− 1)γ
> 0, lim

s→n−
s♯ = γ∗ (p− 1).

Moreover, there exists a constant C = C(n, γ, p, s) > 0 such that∥∥∥V |u|p−1
∥∥∥ 1

p−1

L

(
s♯

p−1

)
∗ (Ω)

≤ C ∥V ∥
1

p−1

Lγ(Ω) ∥∇u∥Ls(Ω).

(ii) Let p ≥ n. Suppose further that p < q < γ∗ (p − 1). Then V |u|p−2 u ∈

L

(
q

p−1

)
∗(Ω).

Moreover, there exists a constant C = C(n, γ, p, q) > 0 such that∥∥∥V |u|p−1
∥∥∥ 1

p−1

L
( q

p−1 )∗ (Ω)
≤ C ∥V ∥

1
p−1

Lγ(Ω) ∥∇u∥Lp(Ω).

Proof. (i) One has
1

s♯
=

1

s
− pγ − n

n(p− 1)γ
. (2.2)

It follows that s♯ is increasing as a function of s. At the same time,

1

s
>

1

s♯
>

1

n
− pγ − n

n(p− 1)γ
=

n− γ

n(p− 1)γ
=

1

γ∗ (p− 1)
.

Equivalently, s < s♯ < γ∗ (p− 1). Still in view of (2.2),

s♯ − s =
pγ − n

n(p− 1)γ
s s♯ >

(pγ − n) p2

n(p− 1)γ
> 0,

lim
s→n−

1

s♯
=

1

n
− pγ − n

n(p− 1)γ
=

1

γ∗ (p− 1)
.
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Next, (
s♯

p− 1

)
∗

=
ns♯

n(p− 1) + s♯

and our choice of s♯ guarantees that

γ [n(p− 1) + s♯]

ns♯
> 1, (2.3)

0 <
nγ(p− 1)s♯

nγ(p− 1)− (n− γ)s♯
= s∗, (2.4)

while u ∈ Ls∗(Ω) due to Sobolev’s embedding theorem. We have

∥∥∥V |u|p−1
∥∥∥
(

s♯

p−1

)
∗

L

(
s♯

p−1

)
∗ (Ω)

=

∫
Ω

|V |
ns♯

n(p−1)+s♯ |u|
n(p−1)s♯

n(p−1)+s♯ dx

≤
(∫

Ω

|V |γ dx
) ns♯

γ [n(p−1)+s♯]
(∫

Ω

|u|s
∗
dx

)nγ(p−1)−(n−γ)s♯

nγ(p−1)+γs♯

≤ C(n, γ, p, s)

(∫
Ω

|V |γ dx
) ns♯

γ [n(p−1)+s♯]
(∫

Ω

|∇u|s dx
) s∗

s ·nγ(p−1)−(n−γ)s♯

nγ(p−1)+γs♯

= C(n, γ, p, s) ∥V ∥
ns♯

n(p−1)+s♯

Lγ(Ω) ∥∇u∥
n(p−1)s♯

n(p−1)+s♯

Ls(Ω)

by Hölder’s inequality and Sobolev’s embedding theorem in the second and
third steps respectively. The claim then follows from this estimate.

(ii) We repeat the arguments in (i) and replace s♯ with q. The range for q
ensures that (2.3) is still valid with q in place of s♯, whereas (2.4) is replaced
by

0 <
nγ(p− 1)q

nγ(p− 1)− (n− γ)q
< p∗ := ∞.

Furthermore, u ∈ Lt(Ω) for all t ∈ (1,∞) by Sobolev’s embedding theorem.
These enable us to proceed with Hölder’s inequality and arrive at the conclusion
as required. ⊓⊔

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. Let q ∈ (p, γ∗(p − 1)). We divide the proof into two
steps.
Step 1: We show that

∥∇u∥Lq(Ω) ≤ C

(
diam(Ω)

r0

)n
p −n

q (
∥∇u∥Lp(Ω) + ∥F∥Lq(Ω)

)
, (2.5)

where C = C(n,Λ0, Λ1, γ, p, q, ∥V ∥Lγ(Ω)) > 0. By virtue of Lemma 1 and
Proposition 1, it suffices to show that (2.5) holds for q < n.
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Let q < n. We consider two cases as follows.

Case 1: Suppose 1 < p < n. By adjusting the step size h in Lemma 1(i)
to a smaller value when necessary, we may assume that q = p + kh for some
k ∈ {1, 2, 3, . . .}. Then the first application of Lemma 1(i) with s = p yields
that ∥∥∥V |u|p−1

∥∥∥ 1
p−1

L
( p+h

p−1 )∗ (Ω)
≤ C(n, γ, p) ∥V ∥

1
p−1

Lγ(Ω) ∥∇u∥Lp(Ω).

In turn, Proposition 1(a) with f = V |u|p−2 u gives

∥∇u∥Lp+h(Ω) ≤ C

(
diam(Ω)

r0

)n
p − n

p+h

(
∥V |u|p−1∥

1
p−1

L
( p+h

p−1 )∗ (Ω)

+ ∥F∥Lq(Ω)

)

≤ C

(
diam(Ω)

r0

)n
p − n

p+h

max

{
1, ∥V ∥

1
p−1

Lγ(Ω)

}
×
(
∥∇u∥Lp(Ω) + ∥F∥Lq(Ω)

)
,

where C = C(n,Λ0, Λ1, γ, p) > 0. Iterating this last estimate k = q−p
h times,

we arrive at

∥∇u∥Lq(Ω) ≤C

(
diam(Ω)

r0

)n
p −n

q

max

{
1, ∥V ∥

1
p−1

Lγ(Ω)

} q−p
h

×
(
∥∇u∥Lp(Ω) + ∥F∥Lq(Ω)

)
,

where C = C(n,Λ0, Λ1, γ, p, q) > 0.

Case 2: Suppose p ≥ n. In this case, Lemma 1(ii) tells us that V |u|p−2 u ∈

L

(
q

p−1

)
∗(Ω). It is straightforward to verify that

1 <
(
q/(p− 1)

)
∗ < n.

Hence applying Proposition 1(a) and (b) yields (2.5) immediately.

Step 2: We show that

∥|V |
1
p u∥Lq(Ω) ≤ C

(
diam(Ω)

r0

)n
q −n

p (
∥∇u∥Lp(Ω) + ∥F∥Lq(Ω)

)
for all q ∈ (p, γp), where C = C(n, γ, p, q, ∥V ∥Lγ(Ω)) > 0.

To this end, it suffices to show that

∥|V |
1
p u∥Lq(Ω) ≤ C(n, γ, p, q) ∥V ∥

1
p

Lγ(Ω) ∥∇u∥Lq(Ω)

for all q ∈ (p, γp). Let q ∈ (p, γp). Recall that n
p < γ < n. Therefore,

γpq/(γp− q) < q∗.
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At the same time, u ∈ Lq∗(Ω) since |∇u| ∈ Lq(Ω) by Step 1. Consequently,
Hölder’s inequality and Sobolev’s embedding theorem give

∫
Ω

(
|V |

1
p u
)q

dx ≤
(∫

Ω

|V |γ dx
) q

pγ
(∫

Ω

|u|
γpq

γp−q

) γp−q
γp

≤ C(n, γ, p, q) ∥V ∥
q
p

Lγ(Ω) ∥∇u∥qLq(Ω)

as required. The theorem now follows by combining the estimates in Step 1
and Step 2 together. ⊓⊔

3 Concluding remark

Certain interest is also paid to the local version of (1.1) which is given by{
−divA(x,Du)+V |u|p−2 u=−div(|F |p−2F ) in Ω2r(y):=B2r(y) ∩Ω,
u = 0 on B2r(y) ∩ ∂Ω if B2r(y) ̸⊂ Ω,

(3.1)
where y ∈ Ω and r > 0. A weak solution to (3.1) is understood in the sense of
Definition 1 with Ω being replaced by Ω2r.

Using analogous arguments as the above, we may also obtain a Calderón-
Zygmund estimate for a weak solution to (3.1). Indeed, the arguments used
to prove Theorem 1 is almost independent of the global property therein, with
the exception being Proposition 1. The local counterpart of Proposition 1 can
be found in [6, Theorems 2.3 and 2.4]). With this in mind, the local Calderón-
Zygmund estimate can be stated as follows.

Theorem 2. Assume the structural conditions. Let u be a weak solution to
(3.1). Then, there exists a constant δ0 = δ0(n,Λ0, Λ1, p) > 0 such that if Ω is
(δ0, r0)-Reifenberg flat and A is (δ0, r0)-vanishing for some r0 ∈ (0, 1), then,

∥∇u∥Lq(Ω
r21−q/p (y)) + 1[q<pγ] ∥V

1
p u∥Lq(Ω

r21−q/p (y))

≤ C
(
∥∇u∥Lp(Ω2r(y)) + ∥F∥Lq(Ω2r(y))

)
for all q ∈

(
p, γ∗ (p− 1)

)
, y ∈ Ω and r ∈ (0, r0

2 ], where

C = C(n,Λ0, Λ1, γ, p, q, ∥V ∥Lγ(Ω)) > 0

and γ∗ is given by (1.5).
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