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1. Introduction

The continuous growth in life expectancy, partly driven by an improvement in healthcare sys-
tems, and the low fertility rates imply an increase in the old-age dependency ratio (that is, the 
number of elderly people compared to those at working age). Consequently, retirement sys-
tems become more unsustainable (Organization for Economic Cooperation and Development 
[OECD], 2019; Peris-Ortiz et al., 2020), which also has a negative impact on the retirement 
income adequacy. For example, in 1990, life expectancy at age 65 was 18.9 years for woman 
and 15.1 years for men in the United States (U.S.) (OECD, 2023b). Thirty years later, in 2020, 
life expectancy at age 65 increased considerably to 19.8 years for women and 17.0 years for 
men. Also, by looking at the fertility rates for the same country, one can see that the fertility 
rate declined from 2.08 children per women in 1990 to 1.64 in 2020 (OECD, 2023a). However, 
these demographic changes are not the only ones that adversely affect the financial health 
of retirement systems and, consequently, the adequacy levels. There are other factors related 
to economic growth, the labor market, and the design of the retirement system (OECD, 2019; 
Peris-Ortiz et al., 2020), among others.

In this complex context, it is very important that citizens are provided with sufficient and 
recurrent retirement information (Basiglio & Oggero, 2020). For instance, individuals need 
to be aware of their future retirement income as accurately as possible and in real prices 
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(Bongini & Cucinelli, 2019; O’Neill et al., 2017) so that they can properly plan their retirement 
and avoid a reduction in purchasing power. Likewise, governments need access to precise 
and helpful information on the future trend of public retirement benefits and other related 
indicators to conduct effective policy decision making and thereby reduce the risk of pov-
erty among older people. However, there is a high level of uncertainty associated with this 
information that needs to be managed. Numerous tools have been developed to handle un-
certainty present in different situations (Figuerola-Wischke et al., 2022; Su et al., 2013; Zeng, 
Gu, et al., 2023; Zeng, Hu, et al., 2023).

With the purpose of helping individuals to have an adequate amount of savings for their 
retirement, and also governments to make good decisions, this paper presents the ordered 
weighted averaging real average pension (OWARAP) operator. The OWARAP operator can 
be seen as an enhanced retirement index. It is built under the ordered weighted averaging 
(OWA) operator from Yager (1988) while considering the effect of inflation. The OWA opera-
tor is an increasingly popular aggregation operator used for fusing numerical information 
based on the attitudinal character of the decision maker by generating weights (Emrouznejad 
& Marra, 2014; He et al., 2017; Yu et al., 2023). Thus, this approach allows to overestimate 
or underestimate the real average retirement benefit according to the opinion of the deci-
sion maker, that is, considering the bipolar preferences, which is very useful for dealing with 
demographic, economic, and pension policy uncertainties.

Over the last years, a great number of researchers have proposed different extensions of 
the OWA operator. Some of the most notable are the induced OWA (IOWA) operator (Yager & 
Filev, 1999), the generalized OWA (GOWA) operator (Yager, 2004), and the probabilistic OWA 
(POWA) operator (Merigó, 2009, 2012). Specifically, the IOWA operator uses order-inducing 
variables; the GOWA operator generalized means (Dyckhoff & Pedrycz, 1984); and the POWA 
operator probabilistic information. This study considers these extensions in the OWARAP op-
erator, thus obtaining the induced OWARAP (IOWARAP) operator, the generalized OWARAP 
(GOWARAP) operator, and the probabilistic OWARAP (POWARAP) operator. This allows the 
decision maker to contemplate a diverse range of aggregation operators and adopt the one 
that best suits with his/her needs and preferences.

In the literature, we can find various authors that apply the OWA operator and extensions 
of this operator in economic indicators, including exchange rates (Flores-Sosa et al., 2020; 
León-Castro et al., 2016, 2018), inflation rates (Espinoza-Audelo et al., 2020; León-Castro et al., 
2020), and prosperity (Amin & Siddiq, 2019). However, they have not yet been applied to the 
average retirement benefit. Therefore, the study’s novelty consists of using the characteristics 
of the OWA operator to forecast the average retirement benefit adjusted for inflation.

This paper is organized as follows. Section 2 briefly reviews some basic but necessary con-
cepts. Section 3 explains the mathematical framework used in this work. Section 4 develops 
an exhaustive numerical example of the proposed approach, which consists in forecasting 
the real average Social Security retirement benefit of each state of the U.S. The last section 
summarizes the main conclusions of the paper and makes some general recommendations 
for future research.
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2. Preliminaries

The following section briefly reviews the OWA operator, the IOWA operator, the GOWA op-
erator, and the POWA operator.

2.1. The OWA operator

The OWA operator was presented by Yager (1988) and it provides a parameterized class of 
mean type aggregation operators that lie between the minimum and the maximum. During 
the last three decades, this operator has been successfully applied in a large variety of fields 
(Kacprzyk et al., 2019). The OWA operator can be defined as follows.

Definition 1. An OWA operator of dimension n is a mapping OWA:Rn  R that has associated 

a weighting vector W = (w1, ..., wn), with wj  [0,1] and 
=

=∑
1

1
n

j
j

w , such that:

 ( )1
1

, , ,
n

n j j
j

OWA a a w b
=

… =∑
 

(1)

where bj is the jth largest element of the arguments a1, ..., an, namely (b1, ..., bn) is (a1, ..., an) 
reordered in a descending way.

The parameterization is carried out by choosing different formations of the weighting 
vector W. For example, if wj = 1/n, for all j, the Laplace criterion (also known as arithmetic 
mean) is formed. Furthermore, another aspect worth highlighting is that when the reorder-
ing process is conducted in an ascending manner, then we get the ascending OWA (AOWA) 
operator (Yager, 1992).

2.2. The IOWA operator

A remarkable extension of the OWA operator is the IOWA operator (Yager & Filev, 1999). The 
main difference between this operator and the classical OWA operator is that the reordering 
step is carried out with order-inducing variables. This is why a major advantage of the IOWA 
operator is that it can consider the complex attitudes of the decision maker. This operator 
can be defined as follows.

Definition 2. An IOWA operator of dimension n is a mapping IOWA:Rn ´ Rn  R that has 

associated a weighting vector W = (w1, ..., wn), with wj  [0,1] and 
=

=∑
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1
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j
j

w , such that:

 ( )1 1
1

, , , , ,
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n n j j
j

IOWA u a u a w b
=

〈 〉 … 〈 〉 =∑
 

(2)

where bj is the ai value of the IOWA pair ,i iu a〈 〉  having the jth largest ui value, ui is referred 
as the order-inducing variable, and ai is the argument variable.

2.3. The GOWA operator

The GOWA operator was introduced by Yager (2004), combining the OWA operator with 
generalized means (Dyckhoff & Pedrycz, 1984). Specifically, this operator incorporates a pa-
rameter that allows control of the power to which the argument values are raised in the 
aggregation. The GOWA operator can be defined as follows.
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Definition 3. A GOWA operator of dimension n is a mapping GOWA:Rn  R that has associ-

ated a weighting vector W = (w1, ..., wn), with wj  [0,1] and 
=

=∑
1

1
n

j
j

w , such that:
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1
1
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n j j
j

GOWA a a w b
l

l

=

 
 … =   
 
∑

 

(3)

where l is a controlling parameter that may take any value in the interval (–∞, ∞) and bj is 
the jth largest of the argument variable ai.

Recall that: if l = –1, the ordered weighted harmonic averaging (OWHA) operator (Yager, 
2004) is found; if l = 0, the ordered weighted geometric (OWG) operator (Chiclana et al., 
2000, 2002); if l = 1, the ordinary OWA operator; and if l = 2, the ordered weighted quadratic 
averaging (OWQA) operator (Yager, 2004).

2.4. The POWA operator

The POWA operator was presented by Merigó (2009, 2012). It can be described as an ag-
gregation operator that integrates both the OWA operator and the probability in the same 
formulation and based on the level of importance of these two concepts in the aggregation 
procedure. As a result, it provides an integrated system for decision making problems under 
risk and uncertainty. The POWA operator can be defined as follows.

Definition 4. A POWA operator of dimension n is a mapping POWA:Rn  R that has associ-

ated a weighting vector W = (w1, ..., wn) with wj  [0,1] and 
1

1
n

j
j

w
=

=∑ , such that:

 ( ) ( )1
1 1 1

ˆ, , 1 ,
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n j j j j i i
j j i

POWA a a v b w b v ab b
= = =

… = = + −∑ ∑ ∑
 

(4)

where bj is the jth largest of the argument ai, each argument ai has associated probability 

vi with 
1

1
n

i
i

v
=

=∑  and vi  [0,1], ( )ˆ 1j j jv w vb b= + −  with b  [0,1], and vj is the probability vi 

ordered according to bj, that is, based on the jth largest of the argument ai.

3. OWA operators in the real average pension benefit

In the following section, the OWARAP operator and some of its extensions and generaliza-
tions will be defined and analyzed.

3.1. The OWARAP operator

The OWARAP operator is an aggregation operator based on Yager’s OWA operator. In par-
ticular, it aggregates the information of a set of nominal average retirement benefits and 
another one with inflations while considering the attitude, judgment, or knowledge of the 
decision maker. This feature makes the OWARAP operator an attractive method for forecast-
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ing the real average retirement benefit under uncertainty, as the decision maker is capable 
of overestimating or underestimating the projections. Also, by making inflation adjustments, 
individuals are able to control if their retirement benefits will or will not grow in the future 
at the same pace as inflation does. This operator is defined as follows.

Definition 5.1. An OWARAP operator of dimension n is a mapping OWARAP:Rn ´ Rn  R 

that has associated a weighting vector W = (w1, ..., wn) with wj  [0,1] and 
1

1
n

j
j

w
=

=∑ , in which:

 ( )
=

… =∑1 1
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, , , , ,
n

n n j j
j

OWARAP CPI p CPI p w P

 

(5.1)

where Pj is the jth largest of the 100
i

i
p

CPI
 
  
 

, pi is the ith argument of a set of nominal average 

retirement benefits, and CPIi is the ith argument of a set of consumer price indices.
Note that Definition 5.1 contemplates different CPI input values in the aggregation. How-

ever, if the decision maker wants to consider a single CPI input value, then the mathematical 
expression of the OWARAP operator can be rewritten as follows.

Definition 5.2. An OWARAP operator of dimension n is a mapping OWARAP:Rn  R that 

has associated a weighting vector W = (w1, ..., wn) with wj  [0,1] and 
1

1
n

j
j

w
=

=∑ , in which:

 ( )1
1

100, , ,
n

n j j
j

OWARAP p p w P
CPI

=

 
… =  

 ∑
 

(5.2)

where Pj is the jth largest argument of a set of nominal average retirement benefits p1, ..., pn 
and CPI is the consumer price index.

Henceforth, the study assumes that several scenarios for the CPI may be possible.

Example 1. Consider the following set of nominal retirement benefits ( )1 2 3 41,300, 1,250, 1,350, 1, 400p p p p= = = =
 ( )1 2 3 41,300, 1,250, 1,350, 1, 400p p p p= = = =  and weighting vector ( )1 2 3 40.4, 0.3, 0.2, 0.1w w w w= = = = . If the col-

lection of consumer prices indices is ( )1 2 3 4190, 180, 200, 210CPI CPI CPI CPI= = = = , then, the 
aggregation process through the OWARAP operator, that is, Eq. (5.1), is solved as follows:

100 1000.4 1,250 0.3 1,300
180 190

× × + × × + × × + × × =
100 1000.2 1,350 0.1 1, 400 684.7.
200 210

The OWARAP operator is an averaging operator that fulfils the properties of monotonicity, 
commutativity (also referred to as symmetry or anonymity), boundedness, and idempoten-
cy (also called agreement or unanimity). These properties are explained below with their 
corresponding theorems. Take into account that most of the proofs are omitted as they are 
considered trivial and repetitive.

Theorem 1. Monotonicity. It states that when an argument increases, the final aggregation 

remains equal or increases, but in no case decreases. If 


100 1 0 ˆ0
i i

ii
p p

CPI CPI

   
≥     
  

, for all i, then, 

( )   … ≥ … 
 

11 1 1, , , , , ,ˆ , ˆ, nn n nOWARAP CPI p CPI p OWARAP CPI p CPI p .
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Theorem 2. Commutativity. Meaning that the initial ordering of the arguments is complete-

ly irrelevant. Thus, ( )   … = … 
 

11 1 1, , , , , ,ˆ , ˆ, nn n nOWARAP CPI p CPI p OWARAP CPI p CPI p , 

where   … 
 

1 1ˆ , , ˆ, ,n nCPI p CPI p  is any permutation of ( )…1 1, , , ,n nCPI p CPI p .

Theorem 3. Boundedness. In the sense that the aggregation is delimited. Accordingly, 

( )         ≤ … ≤                  
1 1

100 100, , , ,i n n i
i i

Min p OWARAP CPI p CPI p Max p
CPI CPI

.

Theorem 4. Idempotency. It signifies that if all the input arguments are the same, then 

the aggregated output should match with them. If 100 100
i

i
p p

CPI CPI
   

=       
, for all i, then, 

( )  
… =  

 
1 1

100, , , ,n nOWARAP CPI p CPI p p
CPI

.

Proof. Since pi = p and CPIi = CPI, for all i, we have
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= = =

   
… = = =   
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1
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w
=

=∑ , we get

( )  
… =  

 
1 1

100, , , , .n nOWARAP CPI p CPI p p
CPI

This operation can be carried out multiple times without changing the result, therefore, 
it can be stated that the OWARAP operator is idempotent.

Furthermore, to determine the values of the weighting vector W of the OWARAP operator, 
it is possible to use the well-known characterizing measures presented by Yager and Alajlan. 
These measures are the degree of orness (Yager, 1988), the entropy of dispersion (Yager, 
1988), the balance operator (Yager, 1996), the divergence (Yager, 2002), and the focus (Yager 
& Alajlan, 2014).

The degree of orness measure, also referred to as the attitudinal character, can be defined 
as follows:
 ( )

1

.
1

n

j
j

n jW w
n

a
=

 −
=  − ∑

 

(6)

The entropy of dispersion measure can be defined as follows:

 ( ) ( )
1

ln .
n

j j
j

H W w w
=

= −∑
 

(7)

The balance operator measure can be defined as follows:

 ( )
1

1 2 .
1

n

j
j

n jBal W w
n

=

 + −
=  − ∑

 

(8)

The divergence measure can be defined as follows:

 ( ) ( )
2

1

.
1

n

j
j

n jDiv W w W
n

a
=

 −
= − − ∑

 

(9)
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And the focus measure can be defined as follows:

 ( )
1

21 ,
n

j
j

Focus W w m j
n

=

= − −∑
 

(10)

where ( )( ) ( )1m n W Wa a= − + .

3.2. Families of the OWARAP operator

Different families of the OWARAP operator can be obtained by choosing different manifes-
tations of the weighting vector W. In the following, some of these families are presented. 

 ■ When w1 = 1 and wj = 0, for all j ≠ 1, the maximum OWARAP operator is found, which 
corresponds to the optimistic decision criterion.

 ■ When wn = 1 and wj = 0, for all j ≠ n, the minimum OWARAP operator is found, which 
corresponds to the pessimistic decision criterion.

 ■ If n is an odd number, then, when w(n+1)/2 = 1 and wj = 0, for all j ≠ (n +1)/2, the median 
OWARAP operator is formed. Otherwise, in the case that n is even, the median OWARAP 
operator is obtained when wn/2 = w(n/2)+1 = 0.5 and wj = 0, for all j ≠ n/2, (n/2) + 1.

 ■ When wj = 1/n, for all j, the normalized OWARAP operator is found, which corresponds 
to the Laplace decision criterion, that is, the arithmetic mean.

 ■ When w1 = a, wn = 1 – a, and wj = 0, for all j ≠ 1, n, the Hurwicz OWARAP operator is 
found.

 ■ When w1 = wn = 0 and wj = 1/(n – 2), for all j ≠ 1, n, the Olympic OWARAP operator 
is found.

 ■ When wk = 1 and wj = 0, for all j ≠ k, the step OWARAP operator is found.

3.3. Extensions and generalizations of the OWARAP operator

An interesting extension of the OWARAP operator is the IOWARAP operator, which uses or-
der-inducing variables in the process of reordering the set of values ( )…1 1, , , ,n nCPI p CPI p  . 
Thus, the reordering step does not depend on the values of the arguments pi and CPIi. This 
is why the main advantage of this extension is the possibility to consider more complex atti-
tudes of the decision maker. The IOWARAP operator is defined as follows.

Definition 6. An IOWARAP operator of dimension n is a mapping IOWARAP:Rn ´ Rn ´ Rn  R 

that has associated a weighting vector W = (w1, ..., wn) with wj ∈ [0,1] and 
1

1
n

j
j

w
=

=∑ , in which:

 ( )
=

… =∑1 1 1
1

, , , , , , ,
n

n n n j j
j

IOWARAP u CPI p u CPI p w P

 

(11)

where pj is the 100
i

i
p

CPI
 
  
 

 value of the IOWARAP triplet 1 1 1, ,u CPI p  having the jth largest 

ui value. ui is referred as the order-inducing variable, pi as the nominal average retirement 
benefit variable, and CPIi as the consumer price index variable.

Moreover, by incorporating generalized means in the OWARAP operator, the GOWARAP 
operator is obtained. Specifically, it adds a parameter that controls the power to which the 
argument values are raised. Thus, this operator comprises an extensive range of aggrega-
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tion operators, including the OWARAP operator and its particular cases, among others. The 
GOWARAP operator is defined as follows.

Definition 7. A GOWARAP operator of dimension n is a mapping GOWARAP:Rn ´ Rn  R 

that has associated a weighting vector W = (w1, ..., wn) with wj ∈ [0,1] and 
1

1
n

j
j

w
=

=∑ , in which:

 ( )
=

 
 … =   
 
∑

1

1 1
1

, , , , ,
n

n j jn
j

GOWARAP CPI p CPI p w P
l

l (12)

where Pj is the jth largest of the 100
i

i
p

CPI
 
  
 

 and l is a controlling parameter that may take 

any value in the interval (–∞, ∞). pi is the nominal average retirement benefit variable and 
CPIi the consumer price index variable.

By giving different values to the controlling parameter l, it is possible to find particular 
cases of the GOWARAP operator, among which the following are noteworthy:

 ■ When l = –1, the harmonic OWARAP (OWHARAP) operator is formed.
 ■ When l = 0, the geometric OWARAP (OWGRAP) operator is formed.
 ■ When l = 1, the OWARAP operator is formed.
 ■ When l = 2, the quadratic OWARAP (OWQARAP) operator is formed.

Likewise, by analyzing the weighting vector W and the controlling parameter l jointly, it 
can be summarized that:

 ■ When l = –∞ and wn ≠ 0, the smallest (100/CPIi)pi value of the collection is obtained, 
which is Pn.

 ■ When l = –∞ and w1 = 1, that is, wj = 0, for all j ≠ 1, the largest (100/CPIi)pi value of 
the collection is achieved, which is P1.

 ■ When l = ∞ and w1 ≠ 0, the largest (100/CPIi)pi value of the collection is obtained, 
which is P1.

 ■ When l = ∞ and wn = 1, that is, wj = 0, for all j ≠ n, the smallest (100/CPIi)pi value of 
the collection is achieved, which is Pn.

Another appealing aggregation operator is the POWARAP operator, which unifies the 
probability and the OWARAP operator into a single formulation. Hence, it adds more informa-
tion to the final outcome. With this operator, it is possible to overestimate or underestimate 
the probabilities based on the attitudinal character of the decision maker. The POWARAP 
operator is defined as follows.

Definition 8. A POWARAP operator of dimension n is a mapping POWARAP:Rn ´ Rn  R that 

has associated a weighting vector W = (w1, ..., wn) with wj ∈ [0,1] and 
1

1
n

j
j

w
=

=∑ , in which:

 ( ) ( )
= = =

 
… = = + −   

 
∑ ∑ ∑1 1

1 1 1

100, , , , 1 ,ˆ
n n n

n n j j j j i i
ij j i

POWARAP CPI p CPI p v P w P v p
CPI

b b

 

(13)

where Pj is the jth largest of the 100
i

i
p

CPI
 
  
 

, pi is referred as the nominal average retirement 
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benefit variable, and CPIi is the consumer price index variable. Each 100
i

i
p

CPI
 
  
 

 has associated 

probability vi with 
1

1
n

i
i

v
=

=∑  and vi ∈ [0,1], ( )ˆ 1j j jv w vb b= + −  with b ∈ [0,1], and vj is the 

probability vi ordered according to Pj, that is, based on the jth largest of the 100
i

i
p

CPI
 
  
 

.

Observe that with the parameter b, the decision maker can represent the degree of im-
portance that the OWARAP operator and the probability have in the aggregation process. 
For example, when the parameter b is equal to 1, the OWARAP operator is obtained, which 
means that the decision maker does not consider probabilistic information. Conversely, when 
b is equal to 0, the expected value is gotten, meaning that full importance is given to the 
probability.

4. Forecasting the U.S. real average Social  
Security retirement benefit

Retirement income in the U.S. is based upon three pillars (Kintzel, 2017): Social Security, em-
ployer-sponsored plans, and personal savings. The following section focuses solely on the 
first one. However, it is worth to briefly review each of them in order to get a general idea 
of the U.S. retirement system.

The Old-Age, Survivors, and Disability Insurance (OASDI), or simply known as Social Se-
curity, is a program run by the federal government of the U.S., more specifically the Social 
Security Administration [SSA]. It is financed through payroll taxes on employers, employees, 
and self-employed. Social Security provides different types of benefits, although the largest 
part is dedicated to the payment of retirement benefits to retired workers. Moreover, OASDI 
benefits are annually adjusted for inflation based on the CPI for urban wage earners and 
clerical workers (CPI-W) not seasonally adjusted (NSA) (SSA, 2021). This is known as cost-of-
living adjustment (COLA).

We can distinguish between two types of employer-sponsored plans. On the one hand, 
there are defined benefit (DB) plans. On the other hand, there are defined contribution (DC) 
plans, where the most popular type is the 401(k). Furthermore, over the last decades, there 
has been a significant shift from DB to DC plans (Altman & Kingson, 2021; Rauh et al., 2020). 
However, DC plans are less secure than DB ones because the investment risk is placed on 
the individuals.

Additionally, workers can also individually save for their retirement. One common way of 
doing this is through an individual retirement account (IRA), which can be simply described 
as an investment account with tax advantages.

In the following, an illustrative example of the explained approach is developed for fore-
casting the December 2025 real average Social Security retirement benefit paid to a retired 
worker in each state of the U.S. Moreover, a multi-expert analysis will be adopted to provide 
a more representative view of the problem. This numerical example is divided into five ex-
planatory steps, the assessment of the final results, and a comparative exercise.
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Step 1. First, historical data regarding the number of Social Security beneficiaries and the 
amount of Social Security benefits paid to retired workers in the U.S. by state is collected. 
Afterward, the amount of benefits is divided by the number of beneficiaries in order to obtain 
the average benefit. These data were extracted from the SSA database; however, with the 
limitation that only annual data as value at end of period, that is, December, was available. 
Similarly, historical COLA data was retrieved from the same source.

Data about the CPI for all urban consumers (CPI-U) NSA with base period 1982–1984 
was also gathered, but in this case, from the U.S. Bureau of Labor Statistics (BLS). Note that 
when computing the average benefits in real terms, the CPI-U is used instead of the CPI-W. 
The CPI for the elderly (CPI-E) is not used either. The nominal and real average benefits for 
December 2021 (latest available data) can be seen in Table 1.

Step 2. Once all the data has been collected, three experts (e1, e2, e3) are asked to provide 
their individual estimations of the COLA and CPI-U NSA development for the years 2023 to 
2025. Table 2 shows this information.

Step 3. Then, the nominal average Social Security benefits for retired workers can be fore-
casted through the application of a simple linear regression with the COLA as the indepen-
dent variable. Note that the dependent variable is expressed in terms of growth. For each 
state the coefficient of determination (R2) is greater than 0.9, meaning that the model has a 
highly good fit. Three different forecast scenarios (S1, S2, S3) are obtained based on the inputs 
provided by the experts (see Table 3).

Step 4. Next, the weighting vector W, inducing vector U, and probabilistic vector V are de-
fined as follows: W = (0.7, 0.2, 0.1), U = (7, 9, 8), and V = (0.2, 0.5, 0.3). Note that subjective 
probabilities are considered. Likewise, the parameter b is determined as follows: b = 0.5.

Step 5. Lastly, the forecast scenarios calculated in Step 3 are combined into a single result. 
To make this, the OWARAP operator, the AOWARAP operator, the IOWARAP operator, the 
OWHARAP operator, the OWQARAP operator, and the POWARAP operator are used. Table 4 
presents the final results.

Table 1. December 2021 nominal and real average Social Security benefits for retired workers (benefits 
in dollars)

State Total 
beneficiaries

Total benefits 
(thousands)

Avg. benefits 
(nominal)

Avg. benefits 
(real)

NR

Connecticut 532,298 975,916 1,833 658
Maine 258,610 405,736 1,569 563
Massachusetts 939,694 1,625,073 1,729 620
New Hampshire 236,601 426,404 1,802 646
New Jersey 1,244,222 2,283,490 1,835 658
New York 2,684,406 4,583,696 1,708 612
Pennsylvania 2,088,154 3,591,417 1,720 617
Rhode Island 167,529 286,073 1,708 612
Vermont 116,636 197,566 1,694 608
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State Total 
beneficiaries

Total benefits 
(thousands)

Avg. benefits 
(nominal)

Avg. benefits 
(real)

MR

Illinois 1,676,914 2,828,644 1,687 605
Indiana 987,268 1,694,505 1,716 616
Iowa 503,615 840,728 1,669 599
Kansas 422,971 728,195 1,722 618
Michigan 1,600,554 2,795,609 1,747 626
Minnesota 829,789 1,444,723 1,741 624
Missouri 936,580 1,525,269 1,629 584
Nebraska 270,312 453,226 1,677 601
North Dakota 105,753 170,049 1,608 577
Ohio 1,689,343 2,740,915 1,622 582
South Dakota 146,407 234,267 1,600 574
Wisconsin 976,275 1,662,791 1,703 611

SR

Alabama 760,698 1,233,110 1,621 581
Arkansas 468,117 732,407 1,565 561
Delaware 175,408 317,406 1,810 649
District of Columbia 60,292 99,154 1,645 590
Florida 3,720,938 6,132,177 1,648 591
Georgia 1,359,691 2,206,254 1,623 582
Kentucky 647,855 1,019,674 1,574 565
Louisiana 583,793 899,530 1,541 553
Maryland 777,516 1,379,246 1,774 636
Mississippi 446,981 688,320 1,540 552
North Carolina 1,611,146 2,674,043 1,660 595
Oklahoma 561,018 908,245 1,619 581
South Carolina 883,812 1,482,113 1,677 601
Tennessee 1,044,660 1,717,632 1,644 590
Texas 3,149,545 5,124,554 1,627 584
Virginia 1,174,814 2,018,548 1,718 616
West Virginia 302,162 487,226 1,612 578

WR

Alaska 81,718 130,347 1,595 572
Arizona 1,105,267 1,874,684 1,696 608
California 4,636,107 7,534,273 1,625 583
Colorado 709,963 1,200,924 1,692 607
Hawaii 230,841 382,062 1,655 594
Idaho 282,455 461,090 1,632 586
Montana 189,757 299,295 1,577 566
Nevada 438,116 706,383 1,612 578
New Mexico 326,068 510,837 1,567 562
Oregon 695,077 1,156,068 1,663 597
Utah 319,644 549,683 1,720 617
Washington 1,068,554 1,872,199 1,752 628
Wyoming 91,386 154,964 1,696 608

Note: Abbreviations: NR – Northeast Region; MR – Midwest Region; SR – South Region; WR – West 
Region; Avg. – Average.

End of Table 1
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Table 2. COLA and CPI-U NSA determined by each expert

Indicator e1 e2 e3

COLA 2023 1.9 3.1 3.6
COLA 2024 1.8 2.0 2.5
COLA 2025 1.8 2.5 3.1
CPI-U NSA Dec-2025 315.729 322.914 328.287

Table 3. December 2025 scenario forecasts of the nominal and real average Social Security benefits for 
retired workers (values in dollars)

State
Nominal values Real values

S1 S2 S3 S1 S2 S3

NR

Connecticut 2,199 2,245 2,281 696.5 695.3 694.7
Maine 1,888 1,927 1,958 597.9 596.9 596.4
Massachusetts 2,085 2,128 2,162 660.3 659.1 658.6
New Hampshire 2,185 2,230 2,266 691.9 690.7 690.2
New Jersey 2,201 2,247 2,283 697.0 695.9 695.4
New York 2,034 2,077 2,110 644.3 643.3 642.9
Pennsylvania 2,062 2,106 2,139 653.2 652.1 651.6
Rhode Island 2,056 2,099 2,132 651.2 650.0 649.5
Vermont 2,041 2,084 2,117 646.4 645.2 644.7

MR

Illinois 2,008 2,050 2,082 635.9 634.8 634.3
Indiana 2,051 2,095 2,129 649.7 648.8 648.4
Iowa 2,000 2,042 2,074 633.6 632.4 631.8
Kansas 2,066 2,108 2,141 654.2 652.9 652.3
Michigan 2,088 2,133 2,168 661.2 660.5 660.3
Minnesota 2,109 2,153 2,188 667.9 666.9 666.5
Missouri 1,951 1,992 2,024 617.8 616.8 616.5
Nebraska 2,016 2,058 2,090 638.6 637.3 636.7
North Dakota 1,934 1,973 2,003 612.5 611.0 610.2
Ohio 1,930 1,971 2,003 611.2 610.4 610.1
South Dakota 1,934 1,975 2,006 612.7 611.6 611.1
Wisconsin 2,040 2,083 2,117 646.3 645.2 644.8

SR

Alabama 1,956 1,997 2,029 619.5 618.5 618.1
Arkansas 1,883 1,923 1,954 596.5 595.6 595.2
Delaware 2,184 2,230 2,266 691.7 690.6 690.2
District of Columbia 2,029 2,071 2,103 642.8 641.4 640.7
Florida 1,973 2,014 2,047 624.8 623.8 623.4
Georgia 1,955 1,998 2,031 619.4 618.7 618.5
Kentucky 1,891 1,931 1,962 598.8 597.9 597.6
Louisiana 1,843 1,882 1,912 583.9 582.8 582.4
Maryland 2,148 2,192 2,226 680.2 678.8 678.2
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State
Nominal values Real values

S1 S2 S3 S1 S2 S3

SR

Mississippi 1,857 1,896 1,927 588.1 587.2 586.8
North Carolina 2,004 2,047 2,081 634.9 634.1 633.8
Oklahoma 1,946 1,986 2,017 616.2 615.0 614.4
South Carolina 2,029 2,072 2,105 642.6 641.6 641.2
Tennessee 1,985 2,027 2,060 628.6 627.8 627.6
Texas 1,952 1,993 2,024 618.3 617.1 616.6
Virginia 2,084 2,128 2,162 660.1 659.0 658.5
West Virginia 1,923 1,962 1,993 609.0 607.6 606.9

WR

Alaska 1,905 1,943 1,973 603.2 601.8 601.1
Arizona 2,035 2,078 2,112 644.6 643.6 643.3
California 1,936 1,977 2,009 613.2 612.3 611.9
Colorado 2,043 2,086 2,120 647.1 646.1 645.7
Hawaii 1,987 2,029 2,061 629.2 628.2 627.8
Idaho 1,960 2,002 2,035 620.9 620.0 619.8
Montana 1,885 1,924 1,955 596.9 595.9 595.5
Nevada 1,920 1,962 1,993 608.2 607.4 607.2
New Mexico 1,879 1,918 1,948 595.1 594.0 593.5
Oregon 1,987 2,029 2,061 629.4 628.3 627.8
Utah 2,069 2,112 2,145 655.3 654.0 653.3
Washington 2,104 2,148 2,181 666.3 665.0 664.5
Wyoming 2,037 2,079 2,111 645.2 643.7 643.0

Note: Abbreviations: NR – Northeast Region; MR – Midwest Region; SR – South Region; WR – West 
Region.

Table 4. December 2025 aggregated results of the real average Social Security benefits for retired 
workers (values in dollars)

State OWA-
RAP

AOWA-
RAP

IOWA-
RAP

OWHA-
RAP

OWQA-
RAP

POWA-
RAP

NR

Connecticut 696.1 695.0 695.3 696.1 696.1 695.7
Maine 597.6 596.7 596.9 597.6 597.6 597.3
Massachusetts 659.9 658.8 659.1 659.9 659.9 659.5
New Hampshire 691.5 690.5 690.7 691.5 691.5 691.1
New Jersey 696.6 695.7 695.9 696.6 696.6 696.3
New York 643.9 643.1 643.3 643.9 643.9 643.6
Pennsylvania 652.8 651.9 652.1 652.8 652.8 652.5
Rhode Island 650.8 649.8 650.0 650.8 650.8 650.5
Vermont 646.0 645.0 645.2 646.0 646.0 645.6

End of Table 3
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State OWA-
RAP

AOWA-
RAP

IOWA-
RAP

OWHA-
RAP

OWQA-
RAP

POWA-
RAP

MR

Illinois 635.5 634.5 634.8 635.5 635.5 635.2
Indiana 649.4 648.6 648.8 649.4 649.4 649.1
Iowa 633.2 632.1 632.4 633.2 633.2 632.8
Kansas 653.8 652.6 652.9 653.8 653.8 653.4
Michigan 661.0 660.4 660.5 661.0 661.0 660.8
Minnesota 667.6 666.7 666.9 667.6 667.6 667.3
Missouri 617.5 616.7 616.9 617.5 617.5 617.2
Nebraska 638.1 637.0 637.3 638.1 638.1 637.8
North Dakota 612.0 610.6 611.0 612.0 612.0 611.5
Ohio 610.9 610.3 610.4 610.9 610.9 610.7
South Dakota 612.3 611.4 611.6 612.3 612.3 612.0
Wisconsin 645.9 645.0 645.2 645.9 645.9 645.6

SR

Alabama 619.1 618.3 618.5 619.1 619.1 618.9
Arkansas 596.2 595.4 595.6 596.2 596.2 595.9
Delaware 691.4 690.4 690.7 691.4 691.4 691.0
District of Columbia 642.3 641.0 641.4 642.3 642.3 641.9
Florida 624.5 623.6 623.8 624.5 624.5 624.2
Georgia 619.1 618.6 618.7 619.1 619.1 619.0
Kentucky 598.5 597.8 597.9 598.5 598.5 598.3
Louisiana 583.5 582.6 582.8 583.5 583.5 583.2
Maryland 679.7 678.5 678.8 679.7 679.7 679.3
Mississippi 587.8 587.0 587.2 587.8 587.8 587.5
North Carolina 634.6 634.0 634.1 634.6 634.6 634.4
Oklahoma 615.8 614.7 615.0 615.8 615.8 615.4
South Carolina 642.2 641.4 641.6 642.2 642.2 642.0
Tennessee 628.3 627.7 627.8 628.3 628.3 628.1
Texas 617.9 616.9 617.1 617.9 617.9 617.5
Virginia 659.7 658.7 659.0 659.7 659.7 659.4
West Virginia 608.5 607.3 607.6 608.5 608.5 608.1

WR

Alaska 602.7 601.4 601.8 602.7 602.7 602.3
Arizona 644.2 643.5 643.6 644.2 644.2 644.0
California 612.9 612.1 612.3 612.9 612.9 612.6
Colorado 646.7 645.9 646.1 646.7 646.7 646.4
Hawaii 628.9 628.0 628.2 628.9 628.9 628.6
Idaho 620.6 619.9 620.1 620.6 620.6 620.3
Montana 596.6 595.7 595.9 596.6 596.6 596.3
Nevada 608.0 607.3 607.5 608.0 608.0 607.7
New Mexico 594.7 593.7 594.0 594.7 594.7 594.4
Oregon 629.0 628.1 628.3 629.0 629.0 628.7
Utah 654.8 653.7 654.0 654.8 654.8 654.4
Washington 665.8 664.8 665.1 665.8 665.8 665.5
Wyoming 644.7 643.3 643.7 644.6 644.7 644.2

Note: Abbreviations: NR – Northeast Region; MR – Midwest Region; SR – South Region; WR – West 
Region.

End of Table 4
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Table 5. Comparison between nominal and real growth

State

Nominal values Real values

Dec-2021 Dec-2025 
IOWA Growth Dec-2021

Dec-2025 
IOWA-

RAP
Growth

NR

Connecticut 1,833 2,248 23% 658 695 6%
Maine 1,569 1,930 23% 563 597 6%
Massachusetts 1,729 2,131 23% 620 659 6%
New Hampshire 1,802 2,233 24% 646 691 7%
New Jersey 1,835 2,250 23% 658 696 6%
New York 1,708 2,080 22% 612 643 5%
Pennsylvania 1,720 2,108 23% 617 652 6%
Rhode Island 1,708 2,101 23% 612 650 6%
Vermont 1,694 2,086 23% 608 645 6%

MR

Illinois 1,687 2,052 22% 605 635 5%
Indiana 1,716 2,097 22% 616 649 5%
Iowa 1,669 2,044 22% 599 632 6%
Kansas 1,722 2,111 23% 618 653 6%
Michigan 1,747 2,135 22% 626 661 5%
Minnesota 1,741 2,156 24% 624 667 7%
Missouri 1,629 1,994 22% 584 617 6%
Nebraska 1,677 2,060 23% 601 637 6%
North Dakota 1,608 1,975 23% 577 611 6%
Ohio 1,622 1,973 22% 582 610 5%
South Dakota 1,600 1,977 24% 574 612 7%
Wisconsin 1,703 2,086 22% 611 645 6%

SR

Alabama 1,621 1,999 23% 581 619 6%
Arkansas 1,565 1,925 23% 561 596 6%
Delaware 1,810 2,233 23% 649 691 6%
District of Columbia 1,645 2,073 26% 590 641 9%
Florida 1,648 2,017 22% 591 624 6%
Georgia 1,623 2,000 23% 582 619 6%
Kentucky 1,574 1,933 23% 565 598 6%
Louisiana 1,541 1,884 22% 553 583 5%
Maryland 1,774 2,194 24% 636 679 7%
Mississippi 1,540 1,898 23% 552 587 6%
North Carolina 1,660 2,050 24% 595 634 7%
Oklahoma 1,619 1,988 23% 581 615 6%
South Carolina 1,677 2,074 24% 601 642 7%
Tennessee 1,644 2,030 23% 590 628 6%
Texas 1,627 1,995 23% 584 617 6%
Virginia 1,718 2,130 24% 616 659 7%
West Virginia 1,612 1,964 22% 578 608 5%
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State

Nominal values Real values

Dec-2021 Dec-2025 
IOWA Growth Dec-2021

Dec-2025 
IOWA-

RAP
Growth

WR

Alaska 1,595 1,945 22% 572 602 5%
Arizona 1,696 2,081 23% 608 644 6%
California 1,625 1,979 22% 583 612 5%
Colorado 1,692 2,089 23% 607 646 6%
Hawaii 1,655 2,031 23% 594 628 6%
Idaho 1,632 2,004 23% 586 620 6%
Montana 1,577 1,926 22% 566 596 5%
Nevada 1,612 1,964 22% 578 607 5%
New Mexico 1,567 1,920 23% 562 594 6%
Oregon 1,663 2,031 22% 597 628 5%
Utah 1,720 2,114 23% 617 654 6%
Washington 1,752 2,150 23% 628 665 6%
Wyoming 1,696 2,081 23% 608 644 6%

Note: Abbreviations: NR – Northeast Region; MR – Midwest Region; SR – South Region; WR – West 
Region.

In Table 4, we can see that New Jersey, Connecticut, and New Hampshire are the three 
states of the U.S. with the highest results. By contrast, Louisiana, Mississippi, and New Mexico 
have obtained the lowest amounts. Moreover, the differences between these states are quite 
significant. For example, the gap between New Jersey and Louisiana is 113.1 dollars for the 
OWARAP operator.

Likewise, if we look at the results on a regional level, we observe that, on average, the 
Northeast Region has the highest estimated real average Social Security benefit for retired 
workers, compared to the South Region, which has the smallest one.

Furthermore, it is interesting to analyze the effect of the inflation adjustment on the out-
comes. For example, by looking at Table 5, we can see that in North Carolina, the average 
Social Security benefit for retired workers in real prices (based on the IOWARAP operator) is 
expected to increase by 7%. However, if we conduct the same calculations without consider-
ing inflation, then it is estimated to increase by 24%. In this case, the real growth is not in line 
with the current growth, which translates to a considerable loss in the purchasing power of 
the future beneficiaries of this state. This demonstrates the importance of having information 
regarding retirement benefits in real prices.

Additionally, Table 6 compares the proposed approach with other statistical forecasting 
methods. Specifically, with the linear trend (LT) and the double moving average (DMA) of 
length 2. The state of North Carolina and a 3-period hold-out is considered for the compara-
tive analysis. The performance criteria utilized are the mean absolute error (MAE), the mean 
squared error (MSE), and the mean absolute percentage error (MAPE). As can be seen, the 

End of Table 5
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prediction accuracy is higher with the OWARAP operator. Also, in contrast to the LT and the 
DMA, the OWARAP operator allows the aggregation of the opinions of individual experts 
according to the degree of orness. This feature is particularly advantageous when the envi-
ronment is uncertain.

Note that, for the OWARAP1, it is assumed that all three experts provided entirely correct 
information regarding the CPI-U NSA and COLA evolution. For the OWARAP2, rational as-
sumptions are made. Concretely, Expert 1 expects an annual growth of 5% of the December 
CPI-U NSA, Expert 2 of 3%, and Expert 3 of 1%. A similar evolution of the COLA is considered. 
Lastly, the weighting vector contemplated is W = (0.5, 0.3, 0.2) for both operators.

Table 6. Comparison between forecasting methods

 Actual value LT DMA OWARAP1 OWARAP2

Real avg. benefit
Dec-2019 585 591 590 585 581
Dec-2020 593 597 599 592 588
Dec-2021 595 604 609 593 597

Error measure
MAE 0 6 8 1 3
MSE 0 39 78 2 14
MAPE 0.0% 1.0% 1.3% 0.2% 0.6%

5. Conclusions

The OWARAP operator is an aggregation operator used for calculating the future average re-
tirement benefit adjusted for inflation. The OWARAP operator is based on the OWA operator. 
Thus, it provides a parametrized family of aggregation operators ranging from the minimum 
to the maximum real average retirement benefit. The OWARAP operator can be extended by 
using order-inducing variables, generalized means, and also probabilities. In the first case, 
the IOWARAP operator is obtained; in the second case, the GOWARAP operator; and in the 
last case, the POWARAP operator.

This paper also develops a multi-expert analysis of the use of the OWARAP operator and 
its extensions in calculating the future average Social Security benefit adjusted for inflation 
of a retired worker in each state of the U.S. This analysis shows that with the use of these 
new operators, it is possible to underestimate or overestimate the results according to the 
attitudinal character of the analyst as well as its preferences. Furthermore, it demonstrates 
the importance of removing the effect of price inflation in order to obtain a true picture of 
the future average Social Security benefits for retired workers. By using the new approach, 
individuals can plan their retirement more properly and thereby maintain their standard of 
living. Similarly, it can help policy makers make good decisions on retirement-related matters.

In order to continue developing this idea, in future research, it is proposed to study 
further extensions of the OWARAP, IOWARAP, GOWARAP, and POWARAP operators. Also, 
apply these aggregation operators in other countries, such as France or Canada. Lastly, it is 
suggested to develop new algorithms for forecasting retirement indicators.
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