Share:


The estimation of GHG emission costs in road and air transport sector: case study of Serbia

    Ivan Ivković Affiliation
    ; Olja Čokorilo Affiliation
    ; Snežana Kaplanović Affiliation

Abstract

The paper gives special attention on long distance passenger transport and specific emissions related to different transport modes, particularly road and air transport sector. The goal of this research is creation and selection of appropriate methodology for modelling the cost estimation of GHG emissions in road and air transport sector for Republic of Serbia as well as the application of the methodology regarding to detailed calculation by transport mode and sub modes. Input data for road transport sector refer to the 2013 and include road and traffic conditions on the road network. Input data for air transport sector are related to the 2014 and international airport ‘Nikola Tesla’ Belgrade as the main hub point with the highest recorded number of aircraft operations in the Western Balkan countries. The obtained results reveal that, due to realized transport volume, diesel cars have the largest share of the costs of GreenHouse Gas (GHG) emissions within the passenger long distance road transport. Cost estimates of CO2 emissions in the air transport sector shows that A319 aircraft type have the major share in total costs. The reasons are twofold: first, a high level of Landing and Take-Off (LTO) emission factor for CO2 and second, largest number of LTO cycles.


First published online 11 April 2016

Keyword : road transport, air transport, motor vehicle, aircraft, greenhouse gas, air pollutant, emission, cost

How to Cite
Ivković, I., Čokorilo, O., & Kaplanović, S. (2018). The estimation of GHG emission costs in road and air transport sector: case study of Serbia. Transport, 33(1), 260-267. https://doi.org/10.3846/16484142.2016.1169557
Published in Issue
Jan 26, 2018
Abstract Views
1236
PDF Downloads
989
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alonso, G.; Benito, A.; Lonza, L.; Kousoulidou, M. 2014. Investigations on the distribution of air transport traffic and CO2 emissions within the European Union, Journal of Air Transport Management 36: 85–93. http://dx.doi.org/10.1016/j.jairtraman.2013.12.019

Andrejszki, T.; Gangonells, M.; Molnar, E.; Török, Á. 2014a. ForFITS: a new help in transport decision making for a sustainable future, Periodica Polytechnica – Transportation Engineering 42(2): 119–124. http://dx.doi.org/10.3311/PPtr.7442

Andrejszki, T.; Török, Á.; Molnar, E. 2014b. The long-term forecast of land passenger transport related CO2 emission and energy use in Hungary, International Journal for Traffic and Transport Engineering 4(4): 386–396. http://dx.doi.org/10.7708/ijtte.2014.4(4).03

Arul, S. G. 2014. Methodologies to monetize the variations in load factor and GHG emissions per passenger-mile of airlines, Transportation Research Part D: Transport and Environment 32: 411–420. http://dx.doi.org/10.1016/j.trd.2014.08.018

Bakker, S.; Huizenga, C. 2010. Making climate instruments work for sustainable transport in developing countries, Natural Resources Forum 34(4): 314–326. http://dx.doi.org/10.1111/j.1477-8947.2010.01315.x

Batista, T.; Freire, F.; Silva, C. M. 2015. Vehicle environmental rating methodologies: overview and application to light-duty vehicles, Renewable and Sustainable Energy Reviews 45: 192–206. http://dx.doi.org/10.1016/j.rser.2015.01.040

Bickert, S.; Kampker, A.; Greger, D. 2015. Developments of CO2-emissions and costs for small electric and combustion engine vehicles in Germany, Transportation Research Part D: Transport and Environment 36: 138–151. http://dx.doi.org/10.1016/j.trd.2015.02.004

Chavez-Baeza, C.; Sheinbaum-Pardo, C. 2014. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City metropolitan area, Energy 66: 624–634. http://dx.doi.org/10.1016/j.energy.2013.12.047

Dell’Acqua, G.; De Luca, M.; Mauro, R. 2011. Road safety knowledge-based decision support system, Procedia – Social and Behavioral Sciences 20: 973–983. http://dx.doi.org/10.1016/j.sbspro.2011.08.106

Domanovszky, H. 2014. Gas propulsion or e-mobility is the solution on the way of clean and carbon free road transportation?, Periodica Polytechnica – Transportation Engineering 42(1): 63–72. http://dx.doi.org/10.3311/PPtr.7254

EASA. 2015. ICAO Aircraft Engine Emissions Databank. European Aviation Safety Agency (EASA). Available from Internet: http://www.easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank

EEA. 2014. Focusing on Environmental Pressures from Long‑Distance Transport – TERM 2014: Transport Indicators Tracking Progress Towards Environmental Targets in Europe. EEA Report No 7/2014. European Environment Agency (EEA). Available from Internet: http://www.eea.europa.eu/publications/term-report-2014

EEA. 2013. EMEP/EEA Air Pollutant Emission Inventory Guidebook – 2013: Technical Guidance to Prepare National Emission Inventories. EEA Technical report No 12/2013. European Environment Agency (EEA). Available from Internet: http://www.eea.europa.eu/publications/emep-eea-guidebook-2013

EUROCONTROL. 2015. Standard Inputs for EUROCONTROL Cost‑Benefit Analyses. European Organisation for the Safety of Air Navigation (EUROCONTROL). 108 p. Available from Internet: https://www.eurocontrol.int/sites/default/files/publication/files/standard-input-for-eurocontrol-cost-benefit-analyses-2015.pdf

Galanis, A.; Eliou, N. 2014. How future technology in road transportation could create a more sustainable built environment?, in ICTTE Belgrade 2014: Proceedings of the Second International Conference on Traffic and Transport Engineering, 27–28 November 2014, Belgrade, Serbia, 512–516.

Hao, H.; Geng, Y.; Li, W.; Guo, B. 2015. Energy consumption and GHG emissions from China’s freight transport sector: Scenarios through 2050, Energy Policy 85: 94–101. http://dx.doi.org/10.1016/j.enpol.2015.05.016

Highway Capacity Manual. 2000. Transportation Research Board. 1134 p.

ICAO. 2013. Environmental Report 2013: Aviation and Climate Change. International Civil Aviation Organization (ICAO). 224 p. Available from Internet: http://cfapp.icao.int/Environmental-Report-2013/files/assets/common/downloads/ICAO_2013_Environmental_Report.pdf

ICAO. 2011. Airport Air Quality Manual. Doc 9889. International Civil Aviation Organization (ICAO). 200 p. Available from Internet: http://www.icao.int/publications/Documents/9889_cons_en.pdf

IEA. 2012. CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database. 2012 Edition. International Energy Agency (IEA). Available from Internet: http://www.iea.org/statistics/topics/CO2emissions

IPCC. 2013. Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Intergovernmental Panel on Climate Change (IPCC). Available from Internet: http://www.climatechange2013.org

IPCC. 2007. Climate Change 2007: Synthesis Report. IPCC Fourth Assessment Report (AR4). Intergovernmental Panel on Climate Change (IPCC). Available from Internet: https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm

Ivković, I.; Janjoš, Ž.; Žeželj, S.; Jovanović, V. 2011. Research into the costs of vehicle exhaust gases from the standpoint of using natural gas-powered buses, African Journal of Business Management 5(22): 9304–9321.

JRC/PBL. 2013. Global Emissions EDGAR v4.2 FT2010. Joint Research Centre (JRC) and the Netherlands Environmental Assessment Agency (PBL). Available from Internet: http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010

Kaplanović, S.; Mijailović, R. 2012. The internalisation of external costs of CO2 and pollutant emissions from passenger cars, Technological and Economic Development of Economy 18(3): 470–486. http://dx.doi.org/10.3846/20294913.2012.702694

Kuzović, L. 1994. Vrednovanje u upravljanju razvojem i eksploatacijom putne mreže. Beograd: Saobraćajni fakultet. 274 p. (in Serbian).

Loo, B. P. Y.; Li, L.; Psaraki, V.; Pagoni, I. 2014. CO2 emissions associated with hubbing activities in air transport: an international comparison, Journal of Transport Geography 34: 185–193. http://dx.doi.org/10.1016/j.jtrangeo.2013.12.006

Maibach, M.; Schreyer, C.; Sutter, D.; Van Essen, H. P.; Boon, B. H.; Smokers, R.; Schroten, A.; Doll, C.; Pawlowska, B.; Bak, M. 2008. Handbook on Estimation of External Costs in the Transport Sector. CE Delft. 336 p. Available from Internet: http://ec.europa.eu/transport/themes/sustai-nable/doc/2008_costs_handbook.pdf

Nešić, A.; Čavka, I.; Čokorilo, O. 2015. Shifting to more environmentally friendly modes in long-distance transport, in Proceedings of the 2nd International Academic Conference of Places and Technologies, 18–19 June 2015, Nova Gorica, Slovenia, 1–6.

Newton, S. 2009. Serbian National Transport Model System. Zoetermeer. 54 p.

Peng, B.; Du, H.; Ma, S.; Fan, Y.; Broadstock, D. C. 2015 Urban passenger transport energy saving and emission reduction potential: a case study for Tianjin, China, Energy Conversion and Management 102: 4–16. http://dx.doi.org/10.1016/j.enconman.2015.01.017

Roads of Serbia. 2014. Public roads of the IA, IB, II Categories in the Republic of Serbia – Average Annual Daily Traffic – AADT in 2013. Public Enterprise ‘Roads of Serbia’. Available from Internet: http://www.putevi-srbije.rs

RTSA. 2015. Statistical Data. RTSA (Road Traffic Safety Agency) of the Republic of Serbia. Available from Internet: http://en.abs.gov.rs

Rypdal, K. 2002. Aircraft emissions, in Background Papers: IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES), 93–102. Available from Internet: http://www.ipcc-nggip.iges.or.jp/public/gp/gpg-bgp.html

Török, Á. 2014. Environmental comparism of road and railway transport: a case study in Hungary, International Journal for Traffic and Transport Engineering 4(2): 210–219. http://dx.doi.org/10.7708/ijtte.2014.4(2).07

Török, Á.; Török, A.; Heinitz, F. 2014. Usage of production functions in the comparative analysis of transport related fuel consumption, Transport and Telecommunication 15(4): 292–298. http://dx.doi.org/10.2478/ttj-2014-0025

Yan, X.; Crookes, R. J. 2009. Reduction potentials of energy demand and GHG emissions in China’s road transport sector, Energy Policy 37(2): 658–668. http://dx.doi.org/10.1016/j.enpol.2008.10.008