Share:


Method of spectral analysis of traction current of AC electric locomotives

    Sergey Goolak Affiliation
    ; Viktor Tkachenko Affiliation
    ; Gintautas Bureika Affiliation
    ; Gediminas Vaičiūnas Affiliation

Abstract

An improved method for spectral analysis of traction current of an Alternating Current (AC) electric locomotive is considered in the article. A new method of spectral analysis considers the change in voltage in the catenary system as a non-deterministic, non-ergodic and non-Gaussian process. It has been established that higher voltage harmonics in the catenary system have a significant negative effect on the operation of non-traction railway consumers of electricity. In addition, electric locomotives operating in the same feeder zone have a mutual influence on each other. Electric railway transport is a source of higher voltage harmonics and strongly distorts the shape of the sinusoidal voltage of the catenary system, which are caused by the higher spectral components of the current in the electric locomotive traction drive circuit. These spectral components of the traction current arise in the traction drive circuit due to the nonlinearity of the current-voltage characteristics of the electronic devices of an electric locomotive, for example, a contact rectifier, a capacitor circuit of traction motors. Reactive power compensators are used in electric locomotives to eliminate components of higher harmonic traction current in the catenary system. Traditionally, spectral analysis in such systems is performed using Fourier methods. However, the determination of the spectral components of the traction current by the Fourier method for constructing a control system for a reactive power compensator is possible only if the process of voltage variation is a deterministic or ergodic Gaussian process. Otherwise, the application of Fourier transform methods will be incorrect. An analysis of the factors that affect voltage changes in the catenary system showed that this process is significantly different from the ergodic Gaussian process. Such factors include the following: the operating mode of the electric locomotives; number and total capacity of electric locomotives in one feeder zone; electric locomotives passing through feeder zones; instability of collection current. Thus, in the case under consideration, the application of the Fourier methods is incorrect for the analysis of the spectral components of the traction current. This affects the quality of compensation of the higher harmonic components of the traction current, and in some cases, the unstable operation of the control system of the active part of the reactive power compensator. Proposed scientific approach is based on the Levinson–Durbin linear prediction algorithm. On the one hand, this allows adapting the control system of the compensator to the voltage parameters of the catenary system. On the other hand, this allows taking into account the operating modes of electric rail vehicle with reactive power compensation. The construction of a compensator control system using the Levinson–Durbin algorithm significantly simplifies thensynchronization scheme of the compensator and power circuits of the traction electric drive of AC electric locomotive. A comparison of the traditional method of spectral analysis, based on the Fast Fourier Transform (FFT), and the method, based on the Levinson–Durbin algorithm, proposed by the authors, showed the high efficiency of the latter.


First published online 21 January 2021

Keyword : railway transport, AC electric locomotive, reactive power compensator, Fast Fourier Transform (FFT), Levinson–Durbin method

How to Cite
Goolak, S., Tkachenko, V., Bureika, G., & Vaičiūnas, G. (2020). Method of spectral analysis of traction current of AC electric locomotives. Transport, 35(6), 658-668. https://doi.org/10.3846/transport.2020.14242
Published in Issue
Dec 31, 2020
Abstract Views
667
PDF Downloads
507
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bagnall, A.; Lines, J. 2014. Technical report CMP-C14-01: an experimental evaluation of nearest neighbour time series classification, arXiv 1406.4757v1. Available from Internet: https://arxiv.org/abs/1406.4757

Bagwan, S. U.; Mulla, A. M.; Gudaru, U. 2014. Hardware circuit implementation of static VAR compensator (SVC) with thyristor binary compensator, International Electrical Engineering Journal 5(1): 1240–1246.

Benedetto, F.; Giunta, G.; Mastroeni, L. 2015. A maximum entropy method to assess the predictability of financial and commodity prices, Digital Signal Processing 46: 19–31. https://doi.org/10.1016/j.dsp.2015.08.001

Ding, F.; Wang, Y.; Ding, J. 2015. Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxiliary model, Digital Signal Processing 37: 100–108. https://doi.org/10.1016/j.dsp.2014.10.005

Ding, F.; Wang, Y.; Dai, J.; Li, Q.; Chen, Q. 2017. A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input–output data filtering, Journal of the Franklin Institute 354(15): 6938–6955. http://doi.org/10.1016/j.jfranklin.2017.08.009

Gulak, S. A.; Slepuhin, A. Ju.; Chernyh, Ju. M.; Ermolenko, Je. K. 2014. Metod umen’shenija vysshih garmonik v naprjazhenii pitanija tjagovogo privoda jelektrovozov peremennogo toka s kollektornymi dvigateljami, Vestnik Belorusskogo gosudarstvennogo universiteta transporta: nauka i transport (1): 11–12. (in Russian).

Gulak, S. O.; Jermolenko, E. K. 2016. Model’ systemy “tjagova pidstancija – kontaktna merezha – tjagovyj pryvid elektrovoza serii’ VL-80T, K”, Zbirnyk naukovyh prac’ Derzhavnogo ekonomiko-tehnologichnogo universytetu transportu. Serija: Transportni systemy i tehnologii’ 28: 99–109. (in Ukrainian).

Goolak, S.; Gerlici, J.; Tkachenko, V.; Sapronova, S.; Lack, T.; Kravchenko, K. 2019. Determination of parameters of asynchronous electric machines with asymmetrical windings of electric locomotives, Communications – Scientific Letters of the University of Zilina 21(2): 24–31. https://doi.org/10.26552/com.C.2019.2.24-31

Gorobchenko, O.; Fomin, O.; Fomin, V.; Kovalenko, V. 2018. Study of the influence of electric transmission parameters on the efficiency of freight rolling stock of direct current, Eastern-European Journal of Enterprise Technologies 1(3): 60–67. https://doi.org/10.15587/1729-4061.2018.121713

Jadhav, S. S.; Mulla, A. M.; Gudaru, U. 2016. Performance realization of different reactive power controlling techniques: a review, International Journal of Advanced Research in Electronics and Communication Engineering 5(1): 29‑34.

Jain, N.; Ahmad, A. 2016. Intelligent control scheme for mitigating voltage sag and swell problem in electrical power system using reactive power management, International Journal of Engineering Sciences & Research Technology 5(8): 920–929. https://doi.org/10.5281/zenodo.60833

Jericjan, B. H.; Ljubars’kyj, B. G.; Jakunin, D. I. 2016. Modeljuvannja kombinovanoi’ systemy nahylu kuzovu shvydkisnogo ruhomogo skladu zaliznychnogo transportu, Shidno-Jevropejskyj zhurnal peredovyh tehnologij 2(9): 4–17. https://doi.org/10.15587/1729-4061.2016.66782 (in Ukrainian).

Jurado, S.; Nebot, A.; Mugica, F.; Avellana, N. 2015. Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques, Energy 86: 276–291. https://doi.org/10.1016/j.energy.2015.04.039

Kakora, V. A.; Grinkevich, A. V. 2017. Sravnitel’nyj analiz razreshajushhej sposobnosti algoritmov spektral’nogo ocenivanija, Doklady BGUIR 3: 20–24. (in Russian).

Kostin, N. A.; Petrov, A. B. 2011. Metody opredelenija sostavljajushhih polnoj moshhnosti v sistemah jelektricheskoj tjagi, Tehnicheskaja jelektrodinamika 3: 53–59. (in Russian).

Kostin, N. A.; Shejkina, O. G. 2015. Nekanonicheskoe spektral’noe razlozhenie sluchajnyh funkcij tjagovyh naprjazhenija i toka v sistemah jelektricheskogo transporta, Elektrotehnika i Elektromehanika (1): 68–71. (in Russian).

Li, M.; Liu, X. 2018. The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique, Signal Processing 147: 23–34. https://doi.org/10.1016/j.sigpro.2018.01.012

Li, M.; Liu, X.; Ding, F. 2017. Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems, Nonlinear Dynamics 89(1): 197–211. https://doi.org/10.1007/s11071-017-3445-x

Liudvinavičius, L.; Lingaitis, L. P.; Bureika, G. 2011. Investigation on wheel-sets slip and slide control problems of locomotives with ac traction motors, Eksploatacja i Niezawodność – Maintenance and Reliability 4: 21–28.

Loch, H.; Janczura, J.; Weron, A. 2016. Ergodicity testing using an analytical formula for a dynamical functional of alphastable autoregressive fractionally integrated moving average processes, Physical Review E 93(4): 043317. https://doi.org/10.1103/PhysRevE.93.043317

Nazarov, N. S.; Nazarov, O. N. 2015. Osobennosti spektral’nogo analiza tjagovyh tokov jelektropodvizhnogo sostava zheleznyh dorog, Sovremennye problemy sovershenstvovanija raboty zheleznodorozhnogo transporta 11: 88–100. (in Russian).

Nychka, D.; Bandyopadhyay, S.; Hammerling, D.; Lindgren, F.; Sain, S. 2015. A multiresolution Gaussian process model for the analysis of large spatial datasets, Journal of Computational and Graphical Statistics 24(2): 579–599. https://doi.org/10.1080/10618600.2014.914946

Parikh, R. S.; Patel, A. R. 2014. A user friendly Simulink model for FC-TCR to investigate power system issues, International Journal for Scientific Research & Development 1(12): 2653–2656.

Petitjean, F.; Forestier, G.; Webb, G. I.; Nicholson, A. E.; Chen, Y.; Keogh, E. 2014. Dynamic time warping averaging of time series allows faster and more accurate classification, 2014 IEEE International Conference on Data Mining, 14–17 December 2014, Shenzhen, China, 470–479. https://doi.org/10.1109/ICDM.2014.27

Petitjean, F.; Forestier, G.; Webb, G. I.; Nicholson, A. E.; Chen, Y.; Keogh, E. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Knowledge and Information Systems 47(1): 1–26. https://doi.org/10.1007/s10115-015-0878-8

Pishgahzadeh, B.; Soleymani, S; Faghihi, F. 2015. New active type of SFCL during unbalanced faults allocated in incoming and outgoing feeders of distribution networks, International Organization on “Technical and Physical Problems of Engineering” 7(2): 77–83.

Rahi, P. K.; Mehra, R. 2014. Analysis of power spectrum estimation using welch method for various window techniques, International Journal of Emerging Technologies and Engineering 2(6): 106–109.

Raja, M. A. Z.; Chaudhary, N. I. 2015. Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems, Signal Processing 107: 327–339. https://doi.org/10.1016/j.sigpro.2014.06.015

Sasikiran, P.; Manohar, T. G.; Rao, S. K. 2014. Estimating the power spectrum of a wide sense stationary random process using parametric approaches (AR, MA), International Journalnof Recent Advances in Engineering & Technology 2(2): 48–53.

Selvaperumal, S. K.; Nataraj, C.; Thiruchelvam, V.; Hung, W. T. C. 2016. Speech to text synthesis from video automated subtitling using Levinson Durbin method of linear predictive coding, International Journal of Applied Engineering Research 11(4): 2388–2395.

Sykulski, A. M.; Olhede, S. C.; Lilly, J. M. 2016. A widely linear complex autoregressive process of order one, IEEE Transactions on Signal Processing 64(23): 6200–6210. https://doi.org/10.1109/TSP.2016.2599503

Širca, S. 2016. Maximum-likelihood method, in S. Širca (Ed.). Probability for Physicists, 203–225. https://doi.org/10.1007/978-3-319-31611-6_8

Wollstadt, P.; Martinez-Zarzuela, M.; Vicente, R.; Diaz-Pernas, F. J.; Wibral, M. 2014. Efficient transfer entropy analysis of nonstationary neural time series, PLoS ONE 9(7): e102833. https://doi.org/10.1371/journal.pone.0102833

Xiao, D.; Mo, F.; Zhang, Y.; Zhao, M.; Ma, L. 2018. An extended Levinson–Durbin algorithm and its application in mixed excitation linear prediction, Heliyon 4(11): e00948. http://doi.org/10.1016/j.heliyon.2018.e00948

Zabarankin, M.; Uryasev, S. 2014. Maximum likelihood method, Springer Optimization and Its Applications 85: 45–52. https://doi.org/10.1007/978-1-4614-8471-4_4

Zhuang, D. E. H.; Li, G. C. L.; Wong, A. K. C. 2014. Discovery of temporal associations in multivariate time series, IEEE Transactions on Knowledge and Data Engineering 26(12): 2969–2982. http://doi.org/10.1109/tkde.2014.2310219