Share:


New black-filled epoxy coatings for repairing surface of equipment of marine ships

    Andriy Buketov Affiliation
    ; Serhiy Smetankin Affiliation
    ; Pavlo Maruschak Affiliation
    ; Kyrylo Yurenin Affiliation
    ; Oleksandr Sapronov Affiliation
    ; Viktor Matvyeyev Affiliation
    ; Abdellah Menou Affiliation

Abstract

The methods for ensuring long-term and safe operation of marine equipment due to comprehensive repair technologies that use epoxy oligomers and new compositions based on them are developed. The influence of temperature and UltraSonic Treatment (UST) on the rheological properties of the pure epoxy matrix and compositions based on it is explored. The compositions have different content of nanodispersed soot carbon black of brand PowCarbon 2419G (particle size of 24 ± 2 nm). It is established that when nanoparticle soot (q = 0.10…15.00 pts wt) is introduced into the composition of the epoxy matrix treated with ultrasound, the viscosity of the composition increases gradually. Based on the results obtained, temperature ranges are recommended, in which the viscosity of the studied compositions reaches optimal technological parameters for the effective impregnation of threads, tows and various fabrics, and which provide for the effective application of the composition to the working surfaces of marine equipment. Technical recommendations are given for applying the developed black-filled epoxy compositions to the working surfaces of parts, ship mechanisms and pipeline systems of marine vessels.


First published online 28 January 2021

Keyword : protective coating, application and inspection, nanodispersed soot, rheological behaviour, marine equipment

How to Cite
Buketov, A., Smetankin, S., Maruschak, P., Yurenin, K., Sapronov, O., Matvyeyev, V., & Menou, A. (2020). New black-filled epoxy coatings for repairing surface of equipment of marine ships. Transport, 35(6), 679-690. https://doi.org/10.3846/transport.2020.14286
Published in Issue
Dec 31, 2020
Abstract Views
856
PDF Downloads
633
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abbas, M.; Shafiee, M. 2020. An overview of maintenance management strategies for corroded steel structures in extreme marine environments, Marine Structures 71: 102718. https://doi.org/10.1016/j.marstruc.2020.102718

ABS. 2017. Guidance Notes on the Application and Inspection of Marine Coating Systems. American Bureau of Shipping (ABS), Houston, TX, US. 122 p.

Alam, M. A.; Sherif, E.-S. M.; Al-Zahrani, S. M. 2013. Fabrication of various epoxy coatings for offshore applications and evaluating their mechanical properties and corrosion behavior, International Journal of Electrochemical Science 8: 3121–3131.

Anpilogova, V. S.; Kravchenko, T. P.; Nikolaeva, N. Ju.; Nej, Zo. L.; Osipchik, V. S. 2016. Reologicheskie svojstva kompozicionnyh materialov na osnove polijetilena vysokoj plotnosti, Plasticheskie massy (5–6): 9–11. (in Russian).

Arabatzis, I.; Skordas, I.; Skordas, D.; Nikolopoulos, L.; Kousiounelos, P.; Boulougouris, E. 2019. Multi-criteria decision-making methodology for the selection of cargo hold coating for bulk carriers, Ships and Offshore Structures 14(6): 609–630. https://doi.org/10.1080/17445302.2018.1534774

ASTM D2093-03(2017). Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive Bonding.

ASTM D2651-01(2016). Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding.

ASTM D4762-08. Standard Guide for Testing Polymer Matrix Composite Materials.

BS 7079:2009. General Introduction to Standards for Preparation of Steel Substrates before Application of Paints and Related Products.

Brennen, C. E. 2013. Cavitation and Bubble Dynamics. Cambridge University Press. 268 p.

Brusentseva, Т. А.; Filippov, A. А.; Fomin, V. М.; Smirnov, S. V.; Veretennikova, I. А. 2015. Modification of epoxy resin with silica nanoparticles and process engineering of composites based on them, Mechanics of Composite Materials 51(4): 531–538. https://doi.org/10.1007/s11029-015-9523-6

Buketov, A.; Brailo, M.; Yakushchenko, S.; Sapronova, A. 2018. Development of epoxy-polyester composite with improved thermophysical properties for restoration of details of sea and river transport, Advances in Materials Science and Engineering 2018: 6378782. https://doi.org/10.1155/2018/6378782

Buketov, A.; Maruschak, P.; Sapronov, O.; Zinchenko, D.; Yatsyuk, V.; Panin, S. 2016. Enhancing performance characteristics of equipment of sea and river transport by using epoxy composites, Transport 31(3): 333–342. https://doi.org/10.3846/16484142.2016.1212267

Buketov, А. V.; Sapronov, О. О.; Brailo, М. V.; Aleksenko, V. L. 2014. Influence of the ultrasonic treatment on the mechanical and thermal properties of epoxy nanocomposites, Materials Science 49(5): 696–702. https://doi.org/10.1007/s11003-014-9664-0

Buketov, A.; Sapronov, O.; Brailo, M.; Stukhlyak, D.; Yakushchenko, S.; Buketova, N.; Sapronova, A.; Sotsenko, V. 2019. The use of complex additives for the formation of corrosionand wear-resistant epoxy composites, Advances in Materials Science and Engineering 2019: 8183761. https://doi.org/10.1155/2019/8183761

Davies, P. 2016. Environmental degradation of composites for marine structures: new materials and new applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2071): 20150272. https://doi.org/10.1098/rsta.2015.0272

DNV GL. 2017. Corrosion Protection of Ships. Class Guideline DNVGL-CG-0288. 66 p. Available from Internet: https://rules.dnvgl.com/docs/pdf/DNVGL/CG/2017-05/DNVGLCG-0288.pdf

Emi, H.; Yuasa, M.; Kumano, A.; Arima, T.; Yamamoto, N.; Umino, M. 1993. A study on life assessment of ships and offshore structures – 3rd report: corrosion control and condition evaluation for a long life service of the ship, Journal of the Society of Naval Architects of Japan 1993(174): 735–744. (in Japanese). https://doi.org/10.2534/jjasnaoe1968.1993.174_735

Ermahanova, A. M.; Ismailov, M. B. 2018. Vlijanie uglerodnyh nanotrubok na process otverzhdenija i prochnost’ jepoksidnoj smoly, Kompleksnoe ispol’zovanie mineral’nogo syr’ja 4: 105–114. (in Russian). https://doi.org/10.31643/2018/6445.36

Fu, Y.; Wang, W.; Zhang, L.; Vinokurov, V.; Stavitskaya, A.; Lvov, Y. 2019. Development of marine antifouling epoxy coating enhanced with clay nanotubes, Materials 12(24): 4195. https://doi.org/10.3390/ma12244195

Ganiev, M. M. 2007. On improvement of strength characteristics in composite polymeric materials by epoxy binders ultrasonic treatment, Russian Aeronautics (Iz VUZ) 50(4): 455–458. https://doi.org/10.3103/s1068799807040204

GB/T 7045-2003. Colour Carbon Black – Determination of pH Value.

GB/T 7046-2003. Colour Carbon Black – Determination of Dibutyl Phthalate Absorption Number.

GB/T 7047-2003. Colour Black – Determination of Volatile Content.

GB/T 7050-2003. Colour Carbon Black – Determination of Tinting Strength.

GB/T 14853.1-2002. Rubber Compounding Ingredients. Pelletized Carbon Black. Part 1: Determination of Pour Density.

Geng, H. T.; Liu, J. C.; Ren, S. 2016. Effects of diluent on mechanical properties of hollow glass microsphere reinforced epoxy resin composite, Key Engineering Materials 680: 525–528. https://doi.org/10.4028/www.scientific.net/kem.680.525

GOST 10587-93. Smoly jepoksidno-dianovye neotverzhdennye. Tehnicheskie uslovija. (in Russian).

GOST 25271-93. Plastmassy. Smoly zhidkie, jemul’sii ili dispersii. Opredelenie kazhushhejsja vjazkosti po Brukfil’du. (in Russian).

Gudze, M. T.; Melchers, R. E. 2008. Operational based corrosion analysis in naval ships, Corrosion Science 50(12): 3296–3307. https://doi.org/10.1016/j.corsci.2008.08.048

Hellio, C.; Yebra, D. 2009. Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing. 784 p.

Hou, J.; Zhu, G.; Xu, J.; Liu, H. 2013. Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater, Journal of Materials Science & Technology 29(7): 678–684. https://doi.org/10.1016/j.jmst.2013.03.023

Huang, Y. D.; Liu, L.; Qiu, J. H.; Shao, L. 2002. Influence of ultrasonic treatment on the characteristics of epoxy resin and the interfacial property of its carbon fiber composites, Composites Science and Technology 62(16): 2153–2159. https://doi.org/10.1016/S0266-3538(02)00148-3

Il’ina, M. A.; Mashlyakovskii, L. N.; Drinberg, A. S.; Khomko, E. V.; Garabadzhiu, A. V. 2019. Silicon-containing epoxy composites and their use in marine coatings technology, Russian Journal of Applied Chemistry 92(4): 530–542. https://doi.org/10.1134/S1070427219040098

ISO 7056:1981. Plastics Laboratory Ware – Beakers.

ISO 17212:2004. Structural Adhesives – Guidelines for the Surface Preparation of Metals and Plastics Prior to Adhesive Bonding.

ISO 2555:89. Plastics – Resins in the Liquid State or as Emulsions or Dispersions – Determination of Apparent Viscosity by the Brookfield Test Method.

Khalina, M.; Beheshty, M. H.; Salimi, A. 2019. The effect of reactive diluent on mechanical properties and microstructure of epoxy resins, Polymer Bulletin 76(8): 3905–3927. https://doi.org/10.1007/s00289-018-2577-6

Lopez-Ortega, A.; Bayon, R.; Arana, J. L. 2019. Evaluation of protective coatings for high-corrosivity category atmospheres in offshore applications, Materials 12(8): 1325. https://doi.org/10.3390/ma12081325

Maan, A. M. C.; Hofman, A. H.; De Vos, W. M.; Kamperman, M. 2020. Recent developments and practical feasibility of polymer‐based antifouling coatings, Advanced Functional Materials 30(32): 2000936. https://doi.org/10.1002/adfm.202000936

Malkin, A. Ya.; Isayev, A. I. 2012. Rheology: Concepts, Methods, and Applications. ChemTec Publishing. 528 p. https://doi.org/10.1016/C2011-0-04626-4

Mardare, L.; Benea, L. 2017. Development of anticorrosive polymer nanocomposite coating for corrosion protection in marine environment, IOP Conference Series: Materials Science and Engineering 209: 012056. https://doi.org/10.1088/1757-899X/209/1/012056

Mardare, L.; Benea, L.; Dănăilă, E.; Dumitraşcu, V. 2016. Polymeric coatings used against marine corrosion of naval steel EN32, Key Engineering Materials 699: 71–79. https://doi.org/10.4028/www.scientific.net/kem.699.71

Maruschak, P. O.; Panin, S. V.; Ignatovich, S. R.; Zakiev, I. M.; Konovalenko, I. V.; Lytvynenko, I. V.; Sergeev, V. P. 2012a. Influence of deformation process in material at multiple cracking and fragmentation of nanocoating, Theoretical and Applied Fracture Mechanics 57(1): 43–48. https://doi.org/10.1016/j.tafmec.2011.12.007

Maruschak, P. O.; Sorochak, A. P.; Maruschak, O. V. 2012b. Fractodiagnostics of reasons of degradation and failure of steel water pipes, in Transport Means 2012: Proceedings of the International Conference, 25–26 October 2012, Kaunas, Lithuania, 183–186.

Mouritz, A. P.; Gellert, E.; Burchill, P.; Challis, K. 2001. Review of advanced composite structures for naval ships and submarines, Composite Structures 53(1): 21–42. https://doi.org/10.1016/S0263-8223(00)00175-6

Mulder, M. 1996. Basic Principles of Membrane Technology. Springer. 564 p. https://doi.org/10.1007/978-94-009-1766-8

Najafi, M.; Darvizeh, A.; Ansari, R. 2019. Effect of salt water conditioning on novel fiber metal laminates for marine applications, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(8): 1542–1554. https://doi.org/10.1177/1464420718767946

Pahomov, K. S.; Antipov, Ju. V.; Simonov-Emel’janov, I. D. 2016. Reologicheskie svojstva vjazkogo jepoksidnogo oligomera, Plasticheskie massy (3–4): 13–14. (in Russian).

RD 31.21.30-97. Pravila tehnicheskoj jekspluatacii sudovyh tehnicheskih sredstv i konstrukcij. (in Russian).

Rubino, F.; Nistico, A.; Tucci, F.; Carlone, P. 2020. Marine application of fiber reinforced composites: a review, Journal of Marine Science and Engineering 8(1): 26. https://doi.org/10.3390/jmse8010026

Sapronov, O. O.; Buketov, A. V.; Maruschak, P. O.; Panin, S. V.; Brailo, M. V.; Yakushchenko, S. V.; Sapronova, A. V.; Leshchenko, O. V.; Menou, A. 2019. Research of crack initiation and propagation under loading for providing impact resilience of protective coating, Functional Materials 26(1): 114–120. https://doi.org/10.15407/fm26.01.114

Sapronov, O.; Maruschak, P.; Sotsenko, V.; Buketova, N.; De Deus, A. B. D. G.; Sapronova, A.; Prentkovskis, O. 2020. Development and use of new polymer adhesives for the restoration of marine equipment units, Journal of Marine Science and Engineering 8(7): 527. https://doi.org/10.3390/jmse8070527

Selim, M. S.; Shenashen, M. A.; El-Safty, S. A.; Higazy, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A. 2017. Recent progress in marine foul-release polymeric nanocomposite coatings, Progress in Materials Science 87: 1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001

Shaitanov, A. G.; Surovikin, Yu. V.; Morozov, A. D.; Rezanov, I. V. 2013. Investigation of conductive nanodisperse carbon by Raman scattering spectroscopy, International Polymer Science and Technology 40(12): 25–29. https://doi.org/10.1177/0307174x1304001206

Sharma, S.; Luzinov, I. 2011. Ultrasonic curing of one-part epoxy system, Journal of Composite Materials 45(21): 2217–2224. https://doi.org/10.1177/0021998311401075

Soares, C. G.; Garbatov, Y.; Zayed, A.; Wang, G. 2009. Influence of environmental factors on corrosion of ship structures in marine atmosphere, Corrosion Science 51(9): 2014–2026. https://doi.org/10.1016/j.corsci.2009.05.028

Summerscales, J. 2014. Durability of composites in the marine environment, Solid Mechanics and Its Applications 208: 1–13. https://doi.org/10.1007/978-94-007-7417-9_1

Vincent, L. D. 2012. The Marine Coatings User’s Handbook. NACE International. 403 p.

Yamamoto, N.; Ikegami, K. 1998. A study on the degradation of coating and corrosion of ship’s hull based on the probabilistic approach, Journal of Offshore Mechanics and Arctic Engineering 120(3): 121–128. https://doi.org/10.1115/1.2829532