Share:


Approach to rational calculation of superelevation in dual gauge track

Abstract

One of the technical possibilities to solve a gauge crossing is to install a dual gauge. This solution has several advantages and disadvantages discussed in this paper. Lack of experience of maintenance and lack of standards for the design of dual track are among the most important disadvantages. The wheel and rail interface on track curves is more difficult than in straight sections. Therefore, the subject of the present article is a geometrical parameter of dual gauge track, i.e., the rail superelevation, which has an impact on the wheel–rail interaction at curves and influences the value of uncompensated acceleration, occurring when a train passes a curve, and, consequently, the intensity of rail wear. The objective of the present article is to analyse the features of dual gauge track and the superelevation calculation methodology considered, to present the approach to rational calculation of superelevation for dual gauge track of Šeštokai–Mockava (Lithuania–Poland) using several calculation versions as well as to make recommendations for the calculation of superelevation.

Keyword : track curve, standard gauge (1435 mm), Russian gauge (1520 mm), train speed, uncompensated lateral acceleration, wheel–rail interaction, gauge crossing

How to Cite
Gailienė, I., Gedaminskas, M., & Laurinavičius, A. (2018). Approach to rational calculation of superelevation in dual gauge track. Transport, 33(3), 699-706. https://doi.org/10.3846/transport.2018.1577
Published in Issue
Jul 10, 2018
Abstract Views
1156
PDF Downloads
1533
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

AB ‘Lietuvos geležinkeliai’. 2011a. Sugretintų vėžių kelio tiesimo ir priežiūros instrukcija: 1435 ir 1520 mm pločio vėžės. 255/K. AB ‘Lietuvos geležinkeliai’ [JSC Lithuanian Railways]. 25 p. (in Lithuanian).

AB ‘Lietuvos geležinkeliai’. 2011b. Sugretintų vėžių kelio tiesimo ir priežiūros normų aprašas: 1435 mm ir 1520 mm pločio sugretintų vėžių bei 1435 mm vėžės. 256/K. AB ‘Lietuvos geležinkeliai’ [JSC Lithuanian Railways]. 35 p. (in Lithuanian).

Cuervo, P. A; Santa, J. F; Toro, A. 2015. Correlations between wear mechanisms and rail grinding operations in a commercial railroad, Tribology International 82(B): 265–273. . https://doi.org/10.1016/j.triboint.2014.06.025

Evans, J.; Iwnicki, S. D. 2002. Vehicle Dynamics and the Wheel/Rail Interface. Rail Technology Unit, Manchester Metropolitan University, United Kingdom. 20 p.

Gailienė, I. 2012. Investigation into the calculation of superelevation defects on conventional rail lines, Transport 27(3): 229–236. . https://doi.org/10.3846/16484142.2012.719198

Geographic Guide. 2017. Map of Lithuania. Available from Internet: . http://www.geographicguide.net/europe/maps-europe/lithuania.htm

Kovács, G.; Spens, K. M. 2006. Transport infrastructure in the Baltic States post-EU succession, Journal of Transport Geography 14(6): 426–436. . https://doi.org/10.1016/j.jtrangeo.2006.01.003

Lindahl, M. 2001. Track Geometry for High-Speed Railways: A Literature Survey and Simulation of Dynamic Vehicle Response. Royal Institute of Technology, Stockholm, Sweden. 160 p. Available from Internet: . http://www.europakorridoren.se/spargeometri.pdf

Povilaitienė, I. 2004. Influence of Geometrical Parameters of Railway Gauge Upon Rail Durability on Curves: Summary of Doctoral Dissertation. Doctoral dissertation. Vilnius: Technika. 33 p.

Povilaitienė, I.; Laurinavičius, A. 2004. Reduction of external rail wearing on road curves, Journal of Civil Engineering and Management 10(2): 123–130. . https://doi.org/10.1080/13923730.2004.9636296

Sadeghi, J; Akbari, B. 2006. Field investigation on effects of railway track geometric parameters on rail wear, Journal of Zhejiang University – Science A 7(11): 1846–1855. . https://doi.org/10.1631/jzus.2006.A1846

Sadeghi, J; Askarinejad, H. 2007. Influences of track structure, geometry and traffic parameters on railway deterioration, IJE Transactions B: Applications 20(3): 291–300.

Stukalina, O.; Dzhaleva-Chonkova, A. 2012. Problemi na zhelezop”tnite vr”zki mezhdu Ukrajna i s”sednite strani, in Nauchna konferencija ‘Tehnika i stroitelni tehnologii v transporta’, 19–20 septemvri 2012 g., s. Ravda, B”lgarija (in Bulgarian).

Szkoda, M. 2014a. Assessment of reliability, availability and maintainability of rail gauge change systems, Eksploatacja i Niezawodność – Maintenance and Reliability 16(3): 422–432.

Szkoda, M. 2014b. Life cycle cost analysis of Europe–Asia transportation systems. Technical Transactions: Mechanics – Czasopismo Techniczne: Mechanika 1-M(4): 105–114. . http://doi.org/10.4467/2353737XCT.14.053.2503

Wang, J.; Chen, X.; Li, X.; Wu, Y. 2015. Influence of heavy haul railway curve parameters on rail wear, Engineering Failure Analysis 57: 511–520. . https://doi.org/10.1016/j.engfailanal.2015.08.021

Wang, K.; Huang, C.; Zhai, W.; Liu, P.; Wang, S. 2014. Progress on wheel-rail dynamic performance of railway curve negotiation, Journal of Traffic and Transportation Engineering 1(3): 209–220. . https://doi.org/10.1016/S2095-7564(15)30104-5

Wikipedia®. 2017. 5 ft and 1520 mm Gauge Railways. Available from Internet: . https://en.wikipedia.org/wiki/5_ft_and_1520_mm_gauge_railways