Starting driving style recognition of electric city bus based on deep learning and CAN data
Abstract
Drivers with aggressive driving style driving electric city buses with rapid response and high acceleration performance characteristics are more prone to have traffic accidents in the starting stage. It is of great importance to accurately identify the drivers with aggressive driving style for preventing traffic accidents of city buses. In this article, a starting driving style recognition method of electric city bus is firstly proposed based on deep learning with in-vehicle Controller Area Network (CAN) bus data. The proposed model can automatically extract the deep spatiotemporal features of multi-channel time series data and achieve end-to-end data processing with higher accuracy and generalization ability. The sample data set of driving style is established by pre-processing the collected in-vehicle CAN bus data including the status of driving and vehicle motion, the data pre-processing method includes data cleaning, normalization and sample segmentation. Data set is labelled with subjective evaluation method. The starting driving style recognition method based on Convolutional Neural Network (CNN) model is constructed. Multiple sets of convolutional layers and pooling layers are used to automatically extract the spatiotemporal characteristics of starting driving style hidden in the data such as velocity and pedal position etc. The fully connected neural network and incentive function Softmax are applied to establish the relationship mapping between driving data characteristics and the starting driving styles, which are categorized as cautious, normal and aggressive. The results show that the proposed model can accurately recognize the starting driving style of electric city bus drivers with an accuracy of 98.3%. In addition, the impact of different model structures on model performance such as accuracy and F1 scores was discussed, and the performance of the proposed model was also compared with Support Vector Machine (SVM) and random forest model. The method can be used to accurately identify drivers with aggressive starting driving style and provide references for driver’s safety education, so as to prevent accidents at the starting stage of electric city bus and reduce crash accidents.
Keyword : CAN bus data, deep learning, driving style, electric city bus, recognition
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alkinani, M. H.; Khan, W. Z.; Arshad, Q. 2020. Detecting human driver inattentive and aggressive driving behavior using deep learning: recent advances, requirements and open challenges, IEEE Access 8: 105008–105030. https://doi.org/10.1109/ACCESS.2020.2999829
Amsalu, S. B.; Homaifar, A.; Afghah, F.; Ramyar, S.; Kurt, A. 2015. Driver behavior modeling near intersections using support vector machines based on statistical feature extraction, in 2015 IEEE Intelligent Vehicles Symposium (IV), 28 June – 1 July 2015, Seoul, South Korea, 1270–1275. https://doi.org/10.1109/IVS.2015.7225857
Bian, Y.; Yang, C.; Zhao J. L.; Liang, L. 2018. Good drivers pay less: a study of usage-based vehicle insurance models, Transportation Research Part A: Policy and Practice 107: 20–34. https://doi.org/10.1016/j.tra.2017.10.018
Bosurgi, G.; D’Andrea, A.; Pellegrino, O. 2013. What variables affect to a greater extent the driver’s vision while driving?, Transport 28(4): 331–340. https://doi.org/10.3846/16484142.2013.864329
Chao, Q.; Tao, J.; Wei, X.; Wang, Y.; Meng, L.; Lu, C. 2020. Cavitation intensity recognition for high-speed axial piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals, Alexandria Engineering Journal 59(6): 4463–4473. https://doi.org/10.1016/j.aej.2020.07.052
Chaovalit, P.; Saiprasert, C.; Pholprasit, T. 2013. A method for driving event detection using SAX on smartphone sensors, in 2013 13th International Conference on ITS Telecommunications (ITST), 5–7 November 2013, Tampere, Finland, 450–455. https://doi.org/10.1109/ITST.2013.6685587
Chen, K.-T.; Chen, H.-Y. W. 2019. Driving style clustering using naturalistic driving data, Transportation Research Record: Journal of the Transportation Research Board 2673(6): 176–188. https://doi.org/10.1177/0361198119845360
Deng, Z.; Chu, D.; Wu, C.; Liu, S.; Sun, C.; Liu, T. 2022. A Probabilistic model for driving-style-recognition-enabled driver steering behaviors, IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(3): 1838–1851. https://doi.org/10.1109/TSMC.2020.3037229
Ding, N.; Ma, H.; Zhao, C.; Ma, Y.; Ge, H. 2019. Data anomaly detection for internet of vehicles based on traffic cellular automata and driving style, Sensors 19(22): 4926. https://doi.org/10.3390/s19224926
García, S.; Luengo, J.; Herrera, F. 2015. Data Preprocessing in Data Mining. Springer. 320 p. https://doi.org/10.1007/978-3-319-10247-4
Han, W.; Zhao, J. 2020. Driver behaviour and traffic accident involvement among professional urban bus drivers in China, Transportation Research Part F: Traffic Psychology and Behaviour 74: 184–197. https://doi.org/10.1016/j.trf.2020.08.007
Hastie, T.; Friedman, J.; Tibshirani, R. 2001. Model assessment and selection, in T. Hastie, J. Friedman, R. Tibshirani (Eds.). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 193–224. https://doi.org/10.1007/978-0-387-21606-5_7
Hu, L.; Zhou, X.; Zhang, X.; Wang, F.; Li, Q.; Wu, W. 2021. A review on key challenges in intelligent vehicles: safety and driver-oriented features, IET Intelligent Transport Systems 15(9): 1093–1105. https://doi.org/10.1049/itr2.12088
Li, X.-S.; Cui, X.-T.; Ren, Y.-Y.; Zheng, X.-L. 2022. Unsupervised driving style analysis based on driving maneuver intensity, IEEE Access 10: 48160–48178. https://doi.org/10.1109/ACCESS.2022.3171347
Li, Z.; Wu, C.; Tao, P.; Tian, J.; Ma, L. 2020. DP and DS-LCD: a new lane change decision model coupling driver’s psychology and driving style, IEEE Access 8: 132614–132624. https://doi.org/10.1109/ACCESS.2020.3010409
Liu, W.; Deng, K.; Zhang, X.; Cheng, Y.; Zheng, Z.; Jiang, F.; Peng, J. 2020. A semi-supervised Tri-CatBoost method for driving style recognition, Symmetry 12(3): 336. https://doi.org/10.3390/sym12030336
Liu, Y.; Wang, J.; Zhao, P.; Qin, D.; Chen, Z. 2019. Research on classification and recognition of driving styles based on feature engineering, IEEE Access 7: 89245–89255. https://doi.org/10.1109/ACCESS.2019.2926593
Ma, Y.; Gu, X.; Yu, Y.; Khattakc, A. J.; Chen, S.; Tang, K. 2021. Identification of contributing factors for driver’s perceptual bias of aggressive driving in China, Sustainability 13(2): 766. https://doi.org/10.3390/su13020766
Magaña, V. C.; Pañeda, X. G.; Garcia, R.; Paiva, S.; Pozueco, L. 2021. Beside and behind the wheel: factors that influence driving stress and driving behavior, Sustainability 13(9): 4775. https://doi.org/10.3390/su13094775
Minhas, A. A.; Jabbar, S.; Farhan, M.; Najam ul Islam, M. 2022. A smart analysis of driver fatigue and drowsiness detection using convolutional neural networks, Multimedia Tools and Applications 81(19): 26969–26986. https://doi.org/10.1007/s11042-022-13193-4
Montella, A.; Aria, M.; D’Ambrosio, A.; Mauriello, F. 2012. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery, Accident Analysis & Prevention 49: 58–72. https://doi.org/10.1016/j.aap.2011.04.025
Sajid, F.; Javed, A. R.; Basharat, A.; Kryvinska, N.; Afzal, A.; Rizwan, M. 2021. An efficient deep learning framework for distracted driver detection, IEEE Access 9: 169270–169280. https://doi.org/10.1109/ACCESS.2021.3138137
Van Ly, M.; Martin, S.; Trivedi, M. M. 2013. Driver classification and driving style recognition using inertial sensors, in 2013 IEEE Intelligent Vehicles Symposium (IV), 23–26 June 2013, Gold Coast, Australia, 1040–1045. https://doi.org/10.1109/IVS.2013.6629603
You, H.; Byun, S.-H.; Choo, Y. 2022. Underwater acoustic signal detection using calibrated hidden Markov model with multiple measurements, Sensors 22(14): 5088. https://doi.org/10.3390/s22145088
Zhang, J.; Wu, Z.; Li, F.; Xie, C.; Ren, T.; Chen, J.; Liu, L. 2019a. A deep learning framework for driving behavior identification on in-vehicle CAN-BUS sensor data, Sensors 19(6): 1356. https://doi.org/10.3390/s19061356
Zhang, Y.; Li, J.; Guo, Y.; Xu, C.; Bao, J.; Song, Y. 2019b. Vehicle driving behavior recognition based on multi-view convolutional neural network with joint data augmentation, IEEE Transactions on Vehicular Technology 68(5): 4223–4234. https://doi.org/10.1109/TVT.2019.2903110
Zhang, K.; Robinson, N.; Lee, S.-W.; Guan, C. 2021. Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network, Neural Networks 136: 1–10. https://doi.org/10.1016/j.neunet.2020.12.013
Zhao, C. H.; Zhang, B. L.; He, J.; Lian, J. 2012. Recognition of driving postures by contourlet transform and random forests, IET Intelligent Transport Systems 6(2): 161–168. https://doi.org/10.1049/iet-its.2011.0116
Zhao, D.; Zhong, Y.; Fu, Z.; Hou, J.; Zhao, M. 2022. A review for the driving behavior recognition methods based on vehicle multisensor information, Journal of Advanced Transportation 2022: 7287511. https://doi.org/10.1155/2022/7287511