Share:


Estimation of transport accessibility in case of rational transport hub location

    Alexander Rossolov Affiliation
    ; Vitalii Naumov Affiliation
    ; Nadezhda Popova Affiliation
    ; Ekaterina Vakulenko Affiliation
    ; Olena Levchenko Affiliation

Abstract

The public transit accessibility has become an important attribute of social and economic activity of contemporary society. The shift to the sustainable paradigm of the current cities’ development has made public transport the basic mean for population travels execution. The spatial character of the travels in the megapolises supposes its implementation with the transfers. This may result in the travel time increase if the transport hubs are designed or located inefficiently. In some cases, the transport hub locations do not reflect the current demand for public transport services and require the fulfilment of the infrastructure measures. The paper presents the Hub Location Problem (HLP) solving in the case of rapid transit and trolleybus lines interaction. It has been proposed the combined criterion for the HLP solving based on the two-dimensional coordinate system with the estimation of passenger walk turnover. The simulation procedure to estimate the transport hub relocation has been made in the PTV VISUM software in the case of the Industrial District of Kharkiv City (Ukraine). The results of the economic effect available from the transport hub rational location have been estimated.

Keyword : transport accessibility, transport hub, public transport stops, O–D matrix, transit network modelling

How to Cite
Rossolov, A., Naumov, V., Popova, N., Vakulenko, E., & Levchenko, O. (2021). Estimation of transport accessibility in case of rational transport hub location. Transport, 36(1), 1-12. https://doi.org/10.3846/transport.2021.14299
Published in Issue
Feb 24, 2021
Abstract Views
1175
PDF Downloads
873
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alonso, B.; Moura, J. L.; Dell’Olio, L.; Ibeas, Á. 2011. Bus stop location under different levels of network congestion and elastic demand, Transport 26(2): 141–148. https://doi.org/10.3846/16484142.2011.584960

Azenkot, S.; Prasain, S.; Borning, A.; Fortuna, E.; Ladner, R. E.; Wobbrock, J. O. 2011. Enhancing independence and safety for blind and deaf-blind public transit riders, in CHI’11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 7–12 May 2011, Vancouver, BC, Canada, 3247–3256. https://doi.org/10.1145/1978942.1979424

Biosca, O.; Spiekermann, K.; Stępniak, M. 2013. Transport accessibility at regional scale, Europa XXI 24: 5-17. https://doi.org/10.7163/Eu21.2013.24.1

Bocarejo, J. P.; Oviedo, D. R. 2012. Transport accessibility and social inequities: a tool for identification of mobility needs and evaluation of transport investments, Journal of Transport Geography 24: 142–154. https://doi.org/10.1016/j.jtrangeo.2011.12.004

Campbell, J. F. 1996. Hub location and the p-hub median problem, Operations Research 44(6): 923–935. https://doi.org/10.1287/opre.44.6.923

Campbell, J. F. 1994. Integer programming formulations of discrete hub location problems, European Journal of Operational Research 72(2): 387–405. https://doi.org/10.1016/0377-2217(94)90318-2

Chi, R.; Su, Y.; Qu, Z.; Chi, X. 2019. A hybridization of cuckoo search and differential evolution for the logistics distribution center location problem, Mathematical Problems in Engineering 2019: 7051248. https://doi.org/10.1155/2019/7051248

Comi, A.; Nuzzolo, A.; Brinchi, S.; Vergini, R. 2017. Bus travel time variability: some experimental evidences, Transportation Research Procedia 27: 101–108. https://doi.org/10.1016/j.trpro.2017.12.072

Coppola, P.; Nuzzolo, A. 2011. Changing accessibility, dwelling price and the spatial distribution of socio-economic activities, Research in Transportation Economics 31(1): 63–71. https://doi.org/10.1016/j.retrec.2010.11.009

Cordera, R.; Ibeas, Á.; Dell’Olio, L.; Alonso, B. 2017. Land Use –Transport Interaction Models. CRC Press. 238 p. https://doi.org/10.1201/9780203711811

Ernst, A. T.; Krishnamoorthy, M. 1999. Solution algorithms for the capacitated single allocation hub location problem, Annals of Operations Research 86: 141–159. https://doi.org/10.1023/A:1018994432663

Gelareh, S. 2008. Hub Location Models in Public Transport Planning. Doctoral Thesis. Technical University of Kaiserslautern, Germany. 181 p. Available from Internet: https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1949

Gelareh, S.; Nickel, S. 2011. Hub location problems in transportation networks, Transportation Research Part E: Logistics and Transportation Review 47(6): 1092–1111. https://doi.org/10.1016/j.tre.2011.04.009

Geurs, K. T.; Van Wee, B. 2004. Accessibility evaluation of landuse and transport strategies: review and research directions, Journal of Transport Geography 12(2): 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005

Groenendijk, L.; Rezaei, J.; Correia, G. 2018. Incorporating the travellers’ experience value in assessing the quality of transit nodes: a Rotterdam case study, Case Studies on Transport Policy 6(4): 564–576. https://doi.org/10.1016/j.cstp.2018.07.007

Hara, K.; Azenkot, S.; Campbell, M.; Bennett, C. L.; Le, V.; Pannella, S.; Moore, R.; Minckler, K.; Ng, R. H.; Froehlich, J. 2015. Improving public transit accessibility for blind riders by crowdsourcing bus stop landmark locations with google street view: an extended analysis, ACM Transactions on Accessible Computing 6(2): 5. https://doi.org/10.1145/2717513

Huo, Y.; Li, W.; Zhao, J.; Zhu, S. 2018. Modelling bus delay at bus stop, Transport 33(1): 12–21. https://doi.org/10.3846/16484142.2014.1003324

Iacono, M.; Krizek, K. J.; El-Geneidy, A. 2010. Measuring nonmotorized accessibility: issues, alternatives, and execution, Journal of Transport Geography 18(1): 133–140. https://doi.org/10.1016/j.jtrangeo.2009.02.002

Kopytkov, D.; Levchenko, O.; Rossolov, A.; Samchuk, G. 2018. Determination of the passenger transport fatigue in urban mass transportation, Komunal’ne Gospodarstvo Mist – Municipal Economy of Cities 7(146): 2–11. https://doi.org/10.33042/2522-1809-2018-7-146-2-11

Kulpa, T.; Szarata, A. 2016. Analysis of household survey sample size in trip modelling process, Transportation Research Procedia 14: 1753–1761. https://doi.org/10.1016/j.trpro.2016.05.141

Lohvinenko, V.; Rossolov, A. 2019. Evaluation of transport accessibility of the public transport network on the basis of stop points parametrization, in K. Banet (Ed.). Współczesne Pproblemy Transportu, 6–22.

Murray, A. T. 2003. A coverage model for improving public transit system accessibility and expanding access, Annals of Operations Research 123(1–4): 143–156. https://doi.org/10.1023/A:1026123329433

Naumov, V. 2019. Modeling demand for passenger transfers in the bounds of public transport network, Advances in Intelligent Systems and Computing 879: 156–163. https://doi.org/10.1007/978-3-030-02305-8_19

Nickel, S.; Schöbel, A.; Sonneborn, T. 2001. Hub location problems in urban traffic networks, Applied Optimization 48: 95–107. https://doi.org/10.1007/978-1-4757-3357-0_6

Pagliara, F.; Papa, E. 2011. Urban rail systems investments: an analysis of the impacts on property values and residents’ location, Journal of Transport Geography 19(2): 200–211. https://doi.org/10.1016/j.jtrangeo.2010.02.006

Papa, E.; Bertolini, L. 2015. Accessibility and transit-oriented development in European metropolitan areas, Journal of Transport Geography 47: 70–83. https://doi.org/10.1016/j.jtrangeo.2015.07.003

Rode, P.; Floater, G.; Thomopoulos, N.; Docherty, J.; Schwinger, P.; Mahendra, A.; Fang, W. 2017. Accessibility in cities: transport and urban form, in G. Meyer, S. Shaheen (Eds.). Disrupting Mobility, 239–273.

Rossolov, A. 2016. Demand modelling for public transport service based on variation of needs in travel, Transport Miejski I Regionalny (7): 4–8(12).

Saghapour, T.; Moridpour, S.; Thompson, R. G. 2016. Public transport accessibility in metropolitan areas: A new approach incorporating population density, Journal of Transport Geography 54: 273–285. https://doi.org/10.1016/j.jtrangeo.2016.06.019

Spiekermann, K.; Wegener, M.; Květoň, V.; Marada, M.; Schürmann, C.; Biosca, O.; Ulied Segui, A.; Antikainen, H.; Kotavaara, O.; Rusanen, J.; Bielańska, D.; Fiorello, D.; Komornicki, T.; Rosik, P.; Stepniak, M. 2015. TRACC: Transport Accessibility at Regional/Local Scale and Patterns in Europe. Final Report | Version 06/02/2015. Volume 2: TRACC Scientific Report. 274 p. Available from Internet: https://www.espon.eu/sites/default/files/attachments/TRACC_FR_Volume2_ScientificReport.pdf

Steinfeld, E. 2010. Universal design in mass transportation, in W. Preiser, K. Smith (Eds.). Universal Design Handbook, 19.1–19.10.

Vuchic, V. 1999. Transportation for Livable Cities. Routledge. 378 p.

Yang, R.; Yan, H.; Xiong, W.; Liu, T. 2013. The study of pedestrian accessibility to rail transit stations based on KLP model, Procedia – Social and Behavioural Sciences 96: 714–722. https://doi.org/10.1016/j.sbspro.2013.08.082

Yatskiv (Jackiva), I.; Budilovich (Budiloviča), E.; Gromule, V. 2017. Accessibility to Riga public transport services for transit passengers, Procedia Engineering 187: 82–88. https://doi.org/10.1016/j.proeng.2017.04.353

Yu, B.; Yang, Z-.Z.; Jin, P.-H.; Wu, S.-H.; Yao, B.-Z. 2012. Transit route network design-maximizing direct and transfer demand density, Transportation Research Part C: Emerging Technologies 22: 58–75. https://doi.org/10.1016/j.trc.2011.12.003

Zając, A. P. 2016. City Accessible for everyone – improving accessibility of public transport using the universal design concept, Transportation Research Procedia 14: 1270–1276. https://doi.org/10.1016/j.trpro.2016.05.199

Zhang, N.; Dai, J.; Zhang, X. 2012. Walking affect area of rail transit station based on multinomial logit model, Urban Mass Transit (5): 46–49. (in Chinese).