Predicting a stock market is a challenging task for every investor. Stock market contains difficult relations and its behavior is heavily forecasted. As the investment’s profitability is directly related to the market’s predictability, the need for more accurate and sophisticated forecasting techniques arises. The academic literature is showing a growing interest in implementing non- linear techniques in a time series prediction. The paper goes through the process of creating a time series prediction model for OMX Vilnius stock index using artificial neural network approach. A multi layer perceptron model is applied in order to make periodical daily and monthly forecasts for both the actual index future value and the direction of the index. The neural network is trained using back-propagation method, several topologies are analyzed and the most suitable is selected. The method accuracy is compared to several traditional statistical methods (moving averages and linear regression).
Dzikevičius, A., & Stabužytė, N. (2012). Forecasting OMX Vilnius stock index – a neural network approach. Business: Theory and Practice, 13(4), 324-332. https://doi.org/10.3846/btp.2012.34
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Creativity Studies as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECH to make alternative agreements.